Documentation

LeanAPAP.Mathlib.Analysis.InnerProductSpace.PiL2

instance PiLp.innerProductSpace' {𝕜 : Type u_1} {ι : Type u_2} [AddCommMonoid 𝕜] [Fintype ι] {α : ιType u_3} [(i : ι) → Inner 𝕜 (α i)] :
Inner 𝕜 (PiLp 2 α)
Equations
  • PiLp.innerProductSpace' = { inner := fun (x y : PiLp 2 α) => Finset.sum Finset.univ fun (i : ι) => x i, y i⟫_𝕜 }
@[simp]
theorem PiLp.inner_apply' {𝕜 : Type u_1} {ι : Type u_2} [AddCommMonoid 𝕜] [Fintype ι] {α : ιType u_3} [(i : ι) → Inner 𝕜 (α i)] (x : PiLp 2 α) (y : PiLp 2 α) :
x, y⟫_𝕜 = Finset.sum Finset.univ fun (i : ι) => x i, y i⟫_𝕜