instance
PiLp.innerProductSpace'
{𝕜 : Type u_1}
{ι : Type u_2}
[AddCommMonoid 𝕜]
[Fintype ι]
{α : ι → Type u_3}
[(i : ι) → Inner 𝕜 (α i)]
:
Equations
- PiLp.innerProductSpace' = { inner := fun (x y : PiLp 2 α) => Finset.sum Finset.univ fun (i : ι) => ⟪x i, y i⟫_𝕜 }
@[simp]
theorem
PiLp.inner_apply'
{𝕜 : Type u_1}
{ι : Type u_2}
[AddCommMonoid 𝕜]
[Fintype ι]
{α : ι → Type u_3}
[(i : ι) → Inner 𝕜 (α i)]
(x : PiLp 2 α)
(y : PiLp 2 α)
:
⟪x, y⟫_𝕜 = Finset.sum Finset.univ fun (i : ι) => ⟪x i, y i⟫_𝕜