Documentation

LeanAPAP.Mathlib.Analysis.NormedSpace.PiLp

instance PiLp.addCommGroup {ι : Type u_1} {β : ιType u_2} {p : ENNReal} [(i : ι) → AddCommGroup (β i)] :
Equations
@[simp]
theorem PiLp.equiv_zero' {ι : Type u_1} {β : ιType u_2} [(i : ι) → NormedAddCommGroup (β i)] {p : ENNReal} :
(WithLp.equiv p ((i : ι) → β i)) 0 = 0
@[simp]
theorem PiLp.equiv_symm_zero' {ι : Type u_1} {β : ιType u_2} [(i : ι) → NormedAddCommGroup (β i)] {p : ENNReal} :
(WithLp.equiv p ((i : ι) → β i)).symm 0 = 0
@[simp]
theorem PiLp.equiv_add' {ι : Type u_1} {β : ιType u_2} [(i : ι) → NormedAddCommGroup (β i)] {p : ENNReal} {x : (i : ι) → β i} {y : (i : ι) → β i} :
(WithLp.equiv p ((i : ι) → β i)) (x + y) = (WithLp.equiv p ((i : ι) → β i)) x + (WithLp.equiv p ((i : ι) → β i)) y
@[simp]
theorem PiLp.equiv_symm_add' {ι : Type u_1} {β : ιType u_2} [(i : ι) → NormedAddCommGroup (β i)] {p : ENNReal} {x : (i : ι) → β i} {y : (i : ι) → β i} :
(WithLp.equiv p ((i : ι) → β i)).symm (x + y) = (WithLp.equiv p ((i : ι) → β i)).symm x + (WithLp.equiv p ((i : ι) → β i)).symm y
@[simp]
theorem PiLp.equiv_sub' {ι : Type u_1} {β : ιType u_2} [(i : ι) → NormedAddCommGroup (β i)] {p : ENNReal} {x : (i : ι) → β i} {y : (i : ι) → β i} :
(WithLp.equiv p ((i : ι) → β i)) (x - y) = (WithLp.equiv p ((i : ι) → β i)) x - (WithLp.equiv p ((i : ι) → β i)) y
@[simp]
theorem PiLp.equiv_symm_sub' {ι : Type u_1} {β : ιType u_2} [(i : ι) → NormedAddCommGroup (β i)] {p : ENNReal} {x : (i : ι) → β i} {y : (i : ι) → β i} :
(WithLp.equiv p ((i : ι) → β i)).symm (x - y) = (WithLp.equiv p ((i : ι) → β i)).symm x - (WithLp.equiv p ((i : ι) → β i)).symm y
@[simp]
theorem PiLp.equiv_neg' {ι : Type u_1} {β : ιType u_2} [(i : ι) → NormedAddCommGroup (β i)] {p : ENNReal} {x : (i : ι) → β i} :
(WithLp.equiv p ((i : ι) → β i)) (-x) = -(WithLp.equiv p ((i : ι) → β i)) x
@[simp]
theorem PiLp.equiv_symm_neg' {ι : Type u_1} {β : ιType u_2} [(i : ι) → NormedAddCommGroup (β i)] {p : ENNReal} {x : (i : ι) → β i} :
(WithLp.equiv p ((i : ι) → β i)).symm (-x) = -(WithLp.equiv p ((i : ι) → β i)).symm x