Documentation

LeanAPAP.Mathlib.Data.Rat.Cast.CharZero

@[simp]
theorem NNRat.cast_inj {α : Type u_3} [DivisionSemiring α] [CharZero α] {p : ℚ≥0} {q : ℚ≥0} :
p = q p = q
@[simp]
theorem NNRat.cast_eq_zero {α : Type u_3} [DivisionSemiring α] [CharZero α] {q : ℚ≥0} :
q = 0 q = 0
theorem NNRat.cast_ne_zero {α : Type u_3} [DivisionSemiring α] [CharZero α] {q : ℚ≥0} :
q 0 q 0
@[simp]
theorem NNRat.cast_add {α : Type u_3} [DivisionSemiring α] [CharZero α] (p : ℚ≥0) (q : ℚ≥0) :
(p + q) = p + q
@[simp]
theorem NNRat.cast_mul {α : Type u_3} [DivisionSemiring α] [CharZero α] (p : ℚ≥0) (q : ℚ≥0) :
(p * q) = p * q

Coercion ℚ≥0 → α as a RingHom.

Equations
  • NNRat.castHom α = { toMonoidHom := { toOneHom := { toFun := NNRat.cast, map_one' := }, map_mul' := }, map_zero' := , map_add' := }
Instances For
    @[simp]
    theorem NNRat.coe_castHom {α : Type u_3} [DivisionSemiring α] [CharZero α] :
    (NNRat.castHom α) = NNRat.cast
    @[simp]
    theorem NNRat.cast_pow {α : Type u_3} [DivisionSemiring α] [CharZero α] (q : ℚ≥0) (n : ) :
    (q ^ n) = q ^ n
    @[simp]
    theorem NNRat.cast_zpow {α : Type u_3} [DivisionSemiring α] [CharZero α] (q : ℚ≥0) (n : ) :
    (q ^ n) = q ^ n
    @[simp]
    theorem NNRat.cast_inv {α : Type u_3} [DivisionSemiring α] [CharZero α] (p : ℚ≥0) :
    p⁻¹ = (p)⁻¹
    @[simp]
    theorem NNRat.cast_div {α : Type u_3} [DivisionSemiring α] [CharZero α] (p : ℚ≥0) (q : ℚ≥0) :
    (p / q) = p / q
    @[simp]
    theorem NNRat.cast_divNat {α : Type u_3} [DivisionSemiring α] (a : ) (b : ) :
    (NNRat.divNat a b) = a / b