theorem
NNRat.cast_injective
{α : Type u_3}
[DivisionSemiring α]
[CharZero α]
:
Function.Injective NNRat.cast
@[simp]
@[simp]
@[simp]
@[simp]
Coercion ℚ≥0 → α
as a RingHom
.
Equations
- NNRat.castHom α = { toMonoidHom := { toOneHom := { toFun := NNRat.cast, map_one' := ⋯ }, map_mul' := ⋯ }, map_zero' := ⋯, map_add' := ⋯ }
Instances For
@[simp]
theorem
NNRat.coe_castHom
{α : Type u_3}
[DivisionSemiring α]
[CharZero α]
:
⇑(NNRat.castHom α) = NNRat.cast
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
NNRat.cast_divNat
{α : Type u_3}
[DivisionSemiring α]
(a : ℕ)
(b : ℕ)
:
↑(NNRat.divNat a b) = ↑a / ↑b