Documentation

LeanAPAP.Prereqs.Discrete.Convolution.Order

theorem conv_nonneg {α : Type u_1} {β : Type u_2} [Fintype α] [DecidableEq α] [AddCommGroup α] [OrderedCommSemiring β] {f : αβ} {g : αβ} (hf : 0 f) (hg : 0 g) :
0 f g
theorem dconv_nonneg {α : Type u_1} {β : Type u_2} [Fintype α] [DecidableEq α] [AddCommGroup α] [OrderedCommSemiring β] [StarRing β] [StarOrderedRing β] {f : αβ} {g : αβ} (hf : 0 f) (hg : 0 g) :
0 f g
@[simp]
theorem support_conv {α : Type u_1} {β : Type u_2} [Fintype α] [DecidableEq α] [AddCommGroup α] [StrictOrderedCommSemiring β] {f : αβ} {g : αβ} (hf : 0 f) (hg : 0 g) :
@[simp]
theorem support_dconv {α : Type u_1} {β : Type u_2} [Fintype α] [DecidableEq α] [AddCommGroup α] [StrictOrderedCommSemiring β] [StarRing β] [StarOrderedRing β] {f : αβ} {g : αβ} (hf : 0 f) (hg : 0 g) :
theorem conv_pos {α : Type u_1} {β : Type u_2} [Fintype α] [DecidableEq α] [AddCommGroup α] [StrictOrderedCommSemiring β] {f : αβ} {g : αβ} (hf : 0 < f) (hg : 0 < g) :
0 < f g
theorem dconv_pos {α : Type u_1} {β : Type u_2} [Fintype α] [DecidableEq α] [AddCommGroup α] [StrictOrderedCommSemiring β] [StarRing β] [StarOrderedRing β] {f : αβ} {g : αβ} (hf : 0 < f) (hg : 0 < g) :
0 < f g
@[simp]
theorem iterConv_nonneg {α : Type u_1} {β : Type u_2} [Fintype α] [DecidableEq α] [AddCommGroup α] [OrderedCommSemiring β] {f : αβ} (hf : 0 f) {n : } :
0 f ∗^ n
@[simp]
theorem iterConv_pos {α : Type u_1} {β : Type u_2} [Fintype α] [DecidableEq α] [AddCommGroup α] [StrictOrderedCommSemiring β] {f : αβ} (hf : 0 < f) {n : } :
0 < f ∗^ n

The positivity extension which identifies expressions of the form f ∗ g, such that positivity successfully recognises both f and g.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    The positivity extension which identifies expressions of the form f ○ g, such that positivity successfully recognises both f and g.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The positivity extension which identifies expressions of the form f ○ g, such that positivity successfully recognises both f and g.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For