Documentation

LeanAPAP.Prereqs.Translate

Precomposition operators #

Translation operator #

def translate {α : Type u_2} {β : Type u_3} [AddCommGroup α] (a : α) (f : αβ) :
αβ
Equations
  • τ a f x = f (x - a)
Instances For
    @[simp]
    theorem translate_apply {α : Type u_2} {β : Type u_3} [AddCommGroup α] (a : α) (f : αβ) (x : α) :
    τ a f x = f (x - a)
    @[simp]
    theorem translate_zero {α : Type u_2} {β : Type u_3} [AddCommGroup α] (f : αβ) :
    τ 0 f = f
    theorem translate_translate {α : Type u_2} {β : Type u_3} [AddCommGroup α] (a : α) (b : α) (f : αβ) :
    τ a (τ b f) = τ (a + b) f
    theorem translate_add {α : Type u_2} {β : Type u_3} [AddCommGroup α] (a : α) (b : α) (f : αβ) :
    τ (a + b) f = τ a (τ b f)
    theorem translate_add' {α : Type u_2} {β : Type u_3} [AddCommGroup α] (a : α) (b : α) (f : αβ) :
    τ (a + b) f = τ b (τ a f)
    theorem translate_comm {α : Type u_2} {β : Type u_3} [AddCommGroup α] (a : α) (b : α) (f : αβ) :
    τ a (τ b f) = τ b (τ a f)
    @[simp]
    theorem comp_translate {α : Type u_2} {β : Type u_3} {γ : Type u_4} [AddCommGroup α] (a : α) (f : αβ) (g : βγ) :
    g τ a f = τ a (g f)
    @[simp]
    theorem translate_smul_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [AddCommGroup α] [SMul γ β] (a : α) (f : αβ) (c : γ) :
    τ a (c f) = c τ a f
    @[simp]
    theorem translate_zero_right {α : Type u_2} {β : Type u_3} [AddCommGroup α] [AddCommGroup β] (a : α) :
    τ a 0 = 0
    theorem translate_add_right {α : Type u_2} {β : Type u_3} [AddCommGroup α] [AddCommGroup β] (a : α) (f : αβ) (g : αβ) :
    τ a (f + g) = τ a f + τ a g
    theorem translate_sub_right {α : Type u_2} {β : Type u_3} [AddCommGroup α] [AddCommGroup β] (a : α) (f : αβ) (g : αβ) :
    τ a (f - g) = τ a f - τ a g
    theorem translate_neg_right {α : Type u_2} {β : Type u_3} [AddCommGroup α] [AddCommGroup β] (a : α) (f : αβ) :
    τ a (-f) = -τ a f
    theorem translate_sum_right {ι : Type u_1} {α : Type u_2} {β : Type u_3} [AddCommGroup α] [AddCommGroup β] (a : α) (f : ιαβ) (s : Finset ι) :
    τ a (Finset.sum s fun (i : ι) => f i) = Finset.sum s fun (i : ι) => τ a (f i)
    theorem sum_translate {α : Type u_2} {β : Type u_3} [AddCommGroup α] [AddCommGroup β] [Fintype α] (a : α) (f : αβ) :
    (Finset.sum Finset.univ fun (b : α) => τ a f b) = Finset.sum Finset.univ fun (b : α) => f b
    @[simp]
    theorem support_translate {α : Type u_2} {β : Type u_3} [AddCommGroup α] [AddCommGroup β] (a : α) (f : αβ) :
    theorem translate_prod_right {ι : Type u_1} {α : Type u_2} {β : Type u_3} [AddCommGroup α] [CommRing β] (a : α) (f : ιαβ) (s : Finset ι) :
    τ a (Finset.prod s fun (i : ι) => f i) = Finset.prod s fun (i : ι) => τ a (f i)

    Conjugation negation operator #

    def conjneg {α : Type u_2} {β : Type u_3} [AddGroup α] [CommSemiring β] [StarRing β] (f : αβ) :
    αβ
    Equations
    Instances For
      @[simp]
      theorem conjneg_apply {α : Type u_2} {β : Type u_3} [AddGroup α] [CommSemiring β] [StarRing β] (f : αβ) (x : α) :
      conjneg f x = (starRingEnd β) (f (-x))
      @[simp]
      theorem conjneg_conjneg {α : Type u_2} {β : Type u_3} [AddGroup α] [CommSemiring β] [StarRing β] (f : αβ) :
      theorem conjneg_injective {α : Type u_2} {β : Type u_3} [AddGroup α] [CommSemiring β] [StarRing β] :
      @[simp]
      theorem conjneg_inj {α : Type u_2} {β : Type u_3} [AddGroup α] [CommSemiring β] [StarRing β] {f : αβ} {g : αβ} :
      theorem conjneg_ne_conjneg {α : Type u_2} {β : Type u_3} [AddGroup α] [CommSemiring β] [StarRing β] {f : αβ} {g : αβ} :
      @[simp]
      theorem conjneg_conj {α : Type u_2} {β : Type u_3} [AddGroup α] [CommSemiring β] [StarRing β] (f : αβ) :
      conjneg ((starRingEnd (αβ)) f) = (starRingEnd (αβ)) (conjneg f)
      @[simp]
      theorem conjneg_zero {α : Type u_2} {β : Type u_3} [AddGroup α] [CommSemiring β] [StarRing β] :
      @[simp]
      theorem conjneg_one {α : Type u_2} {β : Type u_3} [AddGroup α] [CommSemiring β] [StarRing β] :
      @[simp]
      theorem conjneg_add {α : Type u_2} {β : Type u_3} [AddGroup α] [CommSemiring β] [StarRing β] (f : αβ) (g : αβ) :
      @[simp]
      theorem conjneg_sum {ι : Type u_1} {α : Type u_2} {β : Type u_3} [AddGroup α] [CommSemiring β] [StarRing β] (s : Finset ι) (f : ιαβ) :
      conjneg (Finset.sum s fun (i : ι) => f i) = Finset.sum s fun (i : ι) => conjneg (f i)
      @[simp]
      theorem conjneg_prod {ι : Type u_1} {α : Type u_2} {β : Type u_3} [AddGroup α] [CommSemiring β] [StarRing β] (s : Finset ι) (f : ιαβ) :
      conjneg (Finset.prod s fun (i : ι) => f i) = Finset.prod s fun (i : ι) => conjneg (f i)
      @[simp]
      theorem conjneg_eq_zero {α : Type u_2} {β : Type u_3} [AddGroup α] [CommSemiring β] [StarRing β] {f : αβ} :
      conjneg f = 0 f = 0
      @[simp]
      theorem conjneg_eq_one {α : Type u_2} {β : Type u_3} [AddGroup α] [CommSemiring β] [StarRing β] {f : αβ} :
      conjneg f = 1 f = 1
      theorem conjneg_ne_zero {α : Type u_2} {β : Type u_3} [AddGroup α] [CommSemiring β] [StarRing β] {f : αβ} :
      conjneg f 0 f 0
      theorem conjneg_ne_one {α : Type u_2} {β : Type u_3} [AddGroup α] [CommSemiring β] [StarRing β] {f : αβ} :
      conjneg f 1 f 1
      theorem sum_conjneg {α : Type u_2} {β : Type u_3} [AddGroup α] [CommSemiring β] [StarRing β] [Fintype α] (f : αβ) :
      (Finset.sum Finset.univ fun (a : α) => conjneg f a) = Finset.sum Finset.univ fun (a : α) => (starRingEnd β) (f a)
      @[simp]
      theorem support_conjneg {α : Type u_2} {β : Type u_3} [AddGroup α] [CommSemiring β] [StarRing β] (f : αβ) :
      @[simp]
      theorem conjneg_sub {α : Type u_2} {β : Type u_3} [AddGroup α] [CommRing β] [StarRing β] (f : αβ) (g : αβ) :
      @[simp]
      theorem conjneg_neg {α : Type u_2} {β : Type u_3} [AddGroup α] [CommRing β] [StarRing β] (f : αβ) :
      @[simp]
      theorem conjneg_nonneg {α : Type u_2} {β : Type u_3} [AddGroup α] [OrderedCommSemiring β] [StarRing β] [StarOrderedRing β] {f : αβ} :
      0 conjneg f 0 f
      @[simp]
      theorem conjneg_pos {α : Type u_2} {β : Type u_3} [AddGroup α] [OrderedCommSemiring β] [StarRing β] [StarOrderedRing β] {f : αβ} :
      0 < conjneg f 0 < f
      @[simp]
      theorem conjneg_nonpos {α : Type u_2} {β : Type u_3} [AddGroup α] [OrderedCommRing β] [StarRing β] [StarOrderedRing β] {f : αβ} :
      conjneg f 0 f 0
      @[simp]
      theorem conjneg_neg' {α : Type u_2} {β : Type u_3} [AddGroup α] [OrderedCommRing β] [StarRing β] [StarOrderedRing β] {f : αβ} :
      conjneg f < 0 f < 0
      noncomputable def dilate {G : Type u_3} {𝕜 : Type u_4} [AddCommGroup G] (f : G𝕜) (n : ) :
      G𝕜
      Equations
      Instances For
        theorem IsSelfAdjoint.dilate {G : Type u_3} {𝕜 : Type u_4} [AddCommGroup G] [Star 𝕜] {f : G𝕜} (hf : IsSelfAdjoint f) (n : ) :