Equivalence between Group
and AddGroup
#
This file contains two equivalences:
groupAddGroupEquivalence
: the equivalence betweenGroupCat
andAddGroupCat
by sendingX : GroupCat
toAdditive X
andY : AddGroupCat
toMultiplicative Y
.commGroupAddCommGroupEquivalence
: the equivalence betweenCommGroupCat
andAddCommGroupCat
by sendingX : CommGroupCat
toAdditive X
andY : AddCommGroupCat
toMultiplicative Y
.
@[simp]
theorem
GroupCat.toAddGroupCat_obj
(X : GroupCat)
:
GroupCat.toAddGroupCat.obj X = AddGroupCat.of (Additive ↑X)
@[simp]
theorem
GroupCat.toAddGroupCat_map
{X : GroupCat}
{Y : GroupCat}
(a : ↑X →* ↑Y)
:
GroupCat.toAddGroupCat.map a = MonoidHom.toAdditive a
@[simp]
theorem
CommGroupCat.toAddCommGroupCat_map
{X : CommGroupCat}
{Y : CommGroupCat}
(a : ↑X →* ↑Y)
:
CommGroupCat.toAddCommGroupCat.map a = MonoidHom.toAdditive a
@[simp]
The functor CommGroup ⥤ AddCommGroup
by sending X ↦ additive X
and f ↦ f
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
AddGroupCat.toGroupCat_obj
(X : AddGroupCat)
:
AddGroupCat.toGroupCat.obj X = GroupCat.of (Multiplicative ↑X)
@[simp]
theorem
AddGroupCat.toGroupCat_map
{X : AddGroupCat}
{Y : AddGroupCat}
(a : ↑X →+ ↑Y)
:
AddGroupCat.toGroupCat.map a = AddMonoidHom.toMultiplicative a
@[simp]
theorem
AddCommGroupCat.toCommGroupCat_map
{X : AddCommGroupCat}
{Y : AddCommGroupCat}
(a : ↑X →+ ↑Y)
:
AddCommGroupCat.toCommGroupCat.map a = AddMonoidHom.toMultiplicative a
@[simp]
The functor AddCommGroup ⥤ CommGroup
by sending X ↦ multiplicative Y
and f ↦ f
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The equivalence of categories between CommGroup
and AddCommGroup
.
Equations
- One or more equations did not get rendered due to their size.