Documentation

Mathlib.Algebra.Category.GroupCat.ForgetCorepresentable

The forget functor is corepresentable #

It is shown that the forget functor AddCommGroupCat.{u} ⥤ Type u is corepresentable by ULift. Similar results are obtained for the variants CommGroupCat, AddGroupCat and GroupCat.

@[simp]
theorem MonoidHom.precompEquiv_symm_apply {α : Type u_1} {β : Type u_2} [Monoid α] [Monoid β] (e : α ≃* β) (γ : Type u_3) [Monoid γ] (g : α →* γ) :
@[simp]
theorem MonoidHom.precompEquiv_apply {α : Type u_1} {β : Type u_2} [Monoid α] [Monoid β] (e : α ≃* β) (γ : Type u_3) [Monoid γ] (f : β →* γ) :
def MonoidHom.precompEquiv {α : Type u_1} {β : Type u_2} [Monoid α] [Monoid β] (e : α ≃* β) (γ : Type u_3) [Monoid γ] :
(β →* γ) (α →* γ)

The equivalence (β →* γ) ≃ (α →* γ) obtained by precomposition with a multiplicative equivalence e : α ≃* β.

Equations
Instances For
    @[simp]
    theorem MonoidHom.fromMultiplicativeIntEquiv_apply (α : Type u) [Group α] (φ : Multiplicative →* α) :
    (MonoidHom.fromMultiplicativeIntEquiv α) φ = φ (Multiplicative.ofAdd 1)

    The equivalence (Multiplicative ℤ →* α) ≃ α for any group α.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem MonoidHom.fromULiftMultiplicativeIntEquiv_apply (α : Type u) [Group α] :
      ∀ (a : ULift.{u, 0} (Multiplicative ) →* α), (MonoidHom.fromULiftMultiplicativeIntEquiv α) a = a ((MulEquiv.symm MulEquiv.ulift) (Multiplicative.ofAdd 1))
      @[simp]
      theorem MonoidHom.fromULiftMultiplicativeIntEquiv_symm_apply_apply (α : Type u) [Group α] :
      ∀ (a : α) (a_1 : ULift.{u, 0} (Multiplicative )), ((MonoidHom.fromULiftMultiplicativeIntEquiv α).symm a) a_1 = a ^ Multiplicative.toAdd (MulEquiv.ulift a_1)

      The equivalence (ULift (Multiplicative ℤ) →* α) ≃ α for any group α.

      Equations
      Instances For
        @[simp]
        theorem AddMonoidHom.precompEquiv_symm_apply {α : Type u_1} {β : Type u_2} [AddMonoid α] [AddMonoid β] (e : α ≃+ β) (γ : Type u_3) [AddMonoid γ] (g : α →+ γ) :
        @[simp]
        theorem AddMonoidHom.precompEquiv_apply {α : Type u_1} {β : Type u_2} [AddMonoid α] [AddMonoid β] (e : α ≃+ β) (γ : Type u_3) [AddMonoid γ] (f : β →+ γ) :
        def AddMonoidHom.precompEquiv {α : Type u_1} {β : Type u_2} [AddMonoid α] [AddMonoid β] (e : α ≃+ β) (γ : Type u_3) [AddMonoid γ] :
        (β →+ γ) (α →+ γ)

        The equivalence (β →+ γ) ≃ (α →+ γ) obtained by precomposition with an additive equivalence e : α ≃+ β.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem AddMonoidHom.fromIntEquiv_apply (α : Type u) [AddGroup α] (φ : →+ α) :
          @[simp]
          def AddMonoidHom.fromIntEquiv (α : Type u) [AddGroup α] :
          ( →+ α) α

          The equivalence (ℤ →+ α) ≃ α for any additive group α.

          Equations
          Instances For
            @[simp]
            theorem AddMonoidHom.fromULiftIntEquiv_symm_apply_apply (α : Type u) [AddGroup α] :
            ∀ (a : α) (a_1 : ULift.{u, 0} ), ((AddMonoidHom.fromULiftIntEquiv α).symm a) a_1 = AddEquiv.ulift a_1 a
            @[simp]
            theorem AddMonoidHom.fromULiftIntEquiv_apply (α : Type u) [AddGroup α] :
            ∀ (a : ULift.{u, 0} →+ α), (AddMonoidHom.fromULiftIntEquiv α) a = a ((AddEquiv.symm AddEquiv.ulift) 1)

            The equivalence (ULift ℤ →+ α) ≃ α for any additive group α.

            Equations
            Instances For

              The forget functor CommGroupCat.{u} ⥤ Type u is corepresentable.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                The forget functor AddCommGroupCat.{u} ⥤ Type u is corepresentable.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For