Linear maps involving submodules of a module #
In this file we define a number of linear maps involving submodules of a module.
Main declarations #
Submodule.subtype
: Embedding of a submodulep
to the ambient spaceM
as aSubmodule
.LinearMap.domRestrict
: The restriction of a semilinear mapf : M → M₂
to a submodulep ⊆ M
as a semilinear mapp → M₂
.LinearMap.restrict
: The restriction of a linear mapf : M → M₁
to a submodulep ⊆ M
andq ⊆ M₁
(ifq
contains the codomain).Submodule.inclusion
: the inclusionp ⊆ p'
of submodulesp
andp'
as a linear map.
Tags #
submodule, subspace, linear map
The natural R
-linear map from a submodule of an R
-module M
to M
.
Equations
- SMulMemClass.subtype S' = { toAddHom := { toFun := Subtype.val, map_add' := ⋯ }, map_smul' := ⋯ }
Instances For
Embedding of a submodule p
to the ambient space M
.
Equations
- Submodule.subtype p = { toAddHom := { toFun := Subtype.val, map_add' := ⋯ }, map_smul' := ⋯ }
Instances For
Note the AddSubmonoid
version of this lemma is called AddSubmonoid.coe_finset_sum
.
The action by a submodule is the action by the underlying module.
The restriction of a linear map f : M → M₂
to a submodule p ⊆ M
gives a linear map
p → M₂
.
Equations
Instances For
A linear map f : M₂ → M
whose values lie in a submodule p ⊆ M
can be restricted to a
linear map M₂ → p.
Equations
- LinearMap.codRestrict p f h = { toAddHom := { toFun := fun (c : M) => { val := f c, property := ⋯ }, map_add' := ⋯ }, map_smul' := ⋯ }
Instances For
Restrict domain and codomain of a linear map.
Equations
- LinearMap.restrict f hf = LinearMap.codRestrict q (LinearMap.domRestrict f p) ⋯
Instances For
Alternative version of domRestrict
as a linear map.
Equations
- LinearMap.domRestrict' p = { toAddHom := { toFun := fun (φ : M →ₗ[R] M₂) => LinearMap.domRestrict φ p, map_add' := ⋯ }, map_smul' := ⋯ }
Instances For
If two submodules p
and p'
satisfy p ⊆ p'
, then inclusion p p'
is the linear map version
of this inclusion.