Big operators on a finset in ordered rings #
This file contains the results concerning the interaction of finset big operators with ordered rings.
If all f i
, i ∈ s
, are nonnegative and each f i
is less than or equal to g i
, then the
product of f i
is less than or equal to the product of g i
. See also Finset.prod_le_prod'
for
the case of an ordered commutative multiplicative monoid.
If all f i
, i ∈ s
, are nonnegative and each f i
is less than or equal to g i
, then the
product of f i
is less than or equal to the product of g i
.
This is a variant (beta-reduced) version of the standard lemma Finset.prod_le_prod
, convenient
for the gcongr
tactic.
If each f i
, i ∈ s
belongs to [0, 1]
, then their product is less than or equal to one.
See also Finset.prod_le_one'
for the case of an ordered commutative multiplicative monoid.
If g, h ≤ f
and g i + h i ≤ f i
, then the product of f
over s
is at least the
sum of the products of g
and h
. This is the version for OrderedCommSemiring
.
Cauchy-Schwarz inequality for finsets.
Note that the name is to match CanonicallyOrderedCommSemiring.mul_pos
.
If g, h ≤ f
and g i + h i ≤ f i
, then the product of f
over s
is at least the
sum of the products of g
and h
. This is the version for CanonicallyOrderedCommSemiring
.
Alias of IsAbsoluteValue.abv_sum
.