The derivative of bounded bilinear maps #
For detailed documentation of the FrΓ©chet derivative,
see the module docstring of Analysis/Calculus/Fderiv/Basic.lean
.
This file contains the usual formulas (and existence assertions) for the derivative of bounded bilinear maps.
Derivative of a bounded bilinear map #
theorem
IsBoundedBilinearMap.hasStrictFDerivAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{b : E Γ F β G}
(h : IsBoundedBilinearMap π b)
(p : E Γ F)
:
HasStrictFDerivAt b (IsBoundedBilinearMap.deriv h p) p
theorem
IsBoundedBilinearMap.hasFDerivAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{b : E Γ F β G}
(h : IsBoundedBilinearMap π b)
(p : E Γ F)
:
HasFDerivAt b (IsBoundedBilinearMap.deriv h p) p
theorem
IsBoundedBilinearMap.hasFDerivWithinAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{b : E Γ F β G}
{u : Set (E Γ F)}
(h : IsBoundedBilinearMap π b)
(p : E Γ F)
:
HasFDerivWithinAt b (IsBoundedBilinearMap.deriv h p) u p
theorem
IsBoundedBilinearMap.differentiableAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{b : E Γ F β G}
(h : IsBoundedBilinearMap π b)
(p : E Γ F)
:
DifferentiableAt π b p
theorem
IsBoundedBilinearMap.differentiableWithinAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{b : E Γ F β G}
{u : Set (E Γ F)}
(h : IsBoundedBilinearMap π b)
(p : E Γ F)
:
DifferentiableWithinAt π b u p
theorem
IsBoundedBilinearMap.fderiv
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{b : E Γ F β G}
(h : IsBoundedBilinearMap π b)
(p : E Γ F)
:
fderiv π b p = IsBoundedBilinearMap.deriv h p
theorem
IsBoundedBilinearMap.fderivWithin
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{b : E Γ F β G}
{u : Set (E Γ F)}
(h : IsBoundedBilinearMap π b)
(p : E Γ F)
(hxs : UniqueDiffWithinAt π u p)
:
fderivWithin π b u p = IsBoundedBilinearMap.deriv h p
theorem
IsBoundedBilinearMap.differentiable
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{b : E Γ F β G}
(h : IsBoundedBilinearMap π b)
:
Differentiable π b
theorem
IsBoundedBilinearMap.differentiableOn
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{b : E Γ F β G}
{u : Set (E Γ F)}
(h : IsBoundedBilinearMap π b)
:
DifferentiableOn π b u
theorem
ContinuousLinearMap.hasFDerivWithinAt_of_bilinear
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{G' : Type u_5}
[NormedAddCommGroup G']
[NormedSpace π G']
(B : E βL[π] F βL[π] G)
{f : G' β E}
{g : G' β F}
{f' : G' βL[π] E}
{g' : G' βL[π] F}
{x : G'}
{s : Set G'}
(hf : HasFDerivWithinAt f f' s x)
(hg : HasFDerivWithinAt g g' s x)
:
HasFDerivWithinAt (fun (y : G') => (B (f y)) (g y))
(((ContinuousLinearMap.precompR G' B) (f x)) g' + ((ContinuousLinearMap.precompL G' B) f') (g x)) s x
theorem
ContinuousLinearMap.hasFDerivAt_of_bilinear
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{G' : Type u_5}
[NormedAddCommGroup G']
[NormedSpace π G']
(B : E βL[π] F βL[π] G)
{f : G' β E}
{g : G' β F}
{f' : G' βL[π] E}
{g' : G' βL[π] F}
{x : G'}
(hf : HasFDerivAt f f' x)
(hg : HasFDerivAt g g' x)
:
HasFDerivAt (fun (y : G') => (B (f y)) (g y))
(((ContinuousLinearMap.precompR G' B) (f x)) g' + ((ContinuousLinearMap.precompL G' B) f') (g x)) x
theorem
ContinuousLinearMap.hasStrictFDerivAt_of_bilinear
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{G' : Type u_5}
[NormedAddCommGroup G']
[NormedSpace π G']
(B : E βL[π] F βL[π] G)
{f : G' β E}
{g : G' β F}
{f' : G' βL[π] E}
{g' : G' βL[π] F}
{x : G'}
(hf : HasStrictFDerivAt f f' x)
(hg : HasStrictFDerivAt g g' x)
:
HasStrictFDerivAt (fun (y : G') => (B (f y)) (g y))
(((ContinuousLinearMap.precompR G' B) (f x)) g' + ((ContinuousLinearMap.precompL G' B) f') (g x)) x
theorem
ContinuousLinearMap.fderivWithin_of_bilinear
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{G' : Type u_5}
[NormedAddCommGroup G']
[NormedSpace π G']
(B : E βL[π] F βL[π] G)
{f : G' β E}
{g : G' β F}
{x : G'}
{s : Set G'}
(hf : DifferentiableWithinAt π f s x)
(hg : DifferentiableWithinAt π g s x)
(hs : UniqueDiffWithinAt π s x)
:
fderivWithin π (fun (y : G') => (B (f y)) (g y)) s x = ((ContinuousLinearMap.precompR G' B) (f x)) (fderivWithin π g s x) + ((ContinuousLinearMap.precompL G' B) (fderivWithin π f s x)) (g x)
theorem
ContinuousLinearMap.fderiv_of_bilinear
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{G' : Type u_5}
[NormedAddCommGroup G']
[NormedSpace π G']
(B : E βL[π] F βL[π] G)
{f : G' β E}
{g : G' β F}
{x : G'}
(hf : DifferentiableAt π f x)
(hg : DifferentiableAt π g x)
:
fderiv π (fun (y : G') => (B (f y)) (g y)) x = ((ContinuousLinearMap.precompR G' B) (f x)) (fderiv π g x) + ((ContinuousLinearMap.precompL G' B) (fderiv π f x)) (g x)