Documentation

Mathlib.CategoryTheory.Adjunction.Opposites

Opposite adjunctions #

This file contains constructions to relate adjunctions of functors to adjunctions of their opposites. These constructions are used to show uniqueness of adjoints (up to natural isomorphism).

Tags #

adjunction, opposite, uniqueness

If G.op is adjoint to F.op then F is adjoint to G.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    If G is adjoint to F.op then F is adjoint to G.unop.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      If G.op is adjoint to F then F.unop is adjoint to G.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        If G is adjoint to F then F.unop is adjoint to G.unop.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          If G is adjoint to F then F.op is adjoint to G.op.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            If G.unop is adjoint to F.unop then F is adjoint to G.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              If F and F' are both adjoint to G, there is a natural isomorphism F.op ⋙ coyoneda ≅ F'.op ⋙ coyoneda. We use this in combination with fullyFaithfulCancelRight to show left adjoints are unique.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem CategoryTheory.Adjunction.homEquiv_leftAdjointUniq_hom_app {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] {F : CategoryTheory.Functor C D} {F' : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} (adj1 : F G) (adj2 : F' G) (x : C) :
                (adj1.homEquiv x (F'.obj x)) ((CategoryTheory.Adjunction.leftAdjointUniq adj1 adj2).hom.app x) = adj2.unit.app x
                @[simp]

                If G and G' are both right adjoint to F, then they are naturally isomorphic.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem CategoryTheory.Adjunction.homEquiv_symm_rightAdjointUniq_hom_app {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] {F : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} {G' : CategoryTheory.Functor D C} (adj1 : F G) (adj2 : F G') (x : D) :
                  (adj2.homEquiv (G.obj x) x).symm ((CategoryTheory.Adjunction.rightAdjointUniq adj1 adj2).hom.app x) = adj1.counit.app x
                  @[simp]

                  Given two adjunctions, if the left adjoints are naturally isomorphic, then so are the right adjoints.

                  Equations
                  Instances For

                    Given two adjunctions, if the right adjoints are naturally isomorphic, then so are the left adjoints.

                    Equations
                    Instances For