Limit properties relating to the (co)yoneda embedding. #
We calculate the colimit of Y ↦ (X ⟶ Y), which is just PUnit.
(This is used in characterising cofinal functors.)
We also show the (co)yoneda embeddings preserve limits and jointly reflect them.
The colimit cocone over coyoneda.obj X, with cocone point PUnit.
Equations
- CategoryTheory.Coyoneda.colimitCocone X = { pt := PUnit.{v + 1} , ι := { app := fun (X_1 : C) (a : (CategoryTheory.coyoneda.obj X).obj X_1) => id PUnit.unit, naturality := ⋯ } }
Instances For
The proposed colimit cocone over coyoneda.obj X is a colimit cocone.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- ⋯ = ⋯
The colimit of coyoneda.obj X is isomorphic to PUnit.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The cone of F corresponding to an element in (F ⋙ yoneda.obj X).sections.
Equations
- CategoryTheory.Limits.coneOfSectionCompYoneda F X s = { pt := Opposite.op X, π := (CategoryTheory.Limits.compYonedaSectionsEquiv F X) s }
Instances For
Equations
- CategoryTheory.yonedaPreservesLimit F X = { preserves := fun {c : CategoryTheory.Limits.Cone F} (hc : CategoryTheory.Limits.IsLimit c) => Nonempty.some ⋯ }
Equations
- CategoryTheory.yonedaPreservesLimitsOfShape J X = { preservesLimit := fun {K : CategoryTheory.Functor J Cᵒᵖ} => inferInstance }
The yoneda embeddings jointly reflect limits.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The cone of F corresponding to an element in (F ⋙ coyoneda.obj X).sections.
Equations
- CategoryTheory.Limits.coneOfSectionCompCoyoneda F X s = { pt := X.unop, π := (CategoryTheory.Limits.compCoyonedaSectionsEquiv F X.unop) s }
Instances For
Equations
- CategoryTheory.coyonedaPreservesLimit F X = { preserves := fun {c : CategoryTheory.Limits.Cone F} (hc : CategoryTheory.Limits.IsLimit c) => Nonempty.some ⋯ }
Equations
- CategoryTheory.coyonedaPreservesLimitsOfShape J X = { preservesLimit := fun {K : CategoryTheory.Functor J C} => inferInstance }
The coyoneda embeddings jointly reflect limits.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The yoneda embedding yoneda.obj X : Cᵒᵖ ⥤ Type v for X : C preserves limits.
Equations
- CategoryTheory.yonedaPreservesLimits X = { preservesLimitsOfShape := fun {J : Type w} [CategoryTheory.Category.{t, w} J] => inferInstance }
The coyoneda embedding coyoneda.obj X : C ⥤ Type v for X : Cᵒᵖ preserves limits.
Equations
- CategoryTheory.coyonedaPreservesLimits X = { preservesLimitsOfShape := fun {J : Type w} [CategoryTheory.Category.{t, w} J] => inferInstance }
Equations
- CategoryTheory.yonedaFunctorPreservesLimits = CategoryTheory.Limits.preservesLimitsOfEvaluation CategoryTheory.yoneda fun (K : Cᵒᵖ) => let_fun this := inferInstance; this
Equations
- CategoryTheory.coyonedaFunctorPreservesLimits = CategoryTheory.Limits.preservesLimitsOfEvaluation CategoryTheory.coyoneda fun (K : C) => let_fun this := inferInstance; this
Equations
- CategoryTheory.yonedaFunctorReflectsLimits = inferInstance
Equations
- CategoryTheory.coyonedaFunctorReflectsLimits = inferInstance
Equations
- CategoryTheory.Functor.representablePreservesLimitsOfShape F J = { preservesLimit := fun {K : CategoryTheory.Functor J Cᵒᵖ} => inferInstance }
Equations
- CategoryTheory.Functor.representablePreservesLimits F = { preservesLimitsOfShape := fun {J : Type w} [CategoryTheory.Category.{t, w} J] => inferInstance }
Equations
- CategoryTheory.Functor.corepresentablePreservesLimitsOfShape F J = { preservesLimit := fun {K : CategoryTheory.Functor J C} => inferInstance }
Equations
- CategoryTheory.Functor.corepresentablePreservesLimits F = { preservesLimitsOfShape := fun {J : Type w} [CategoryTheory.Category.{t, w} J] => inferInstance }