Documentation

Mathlib.Data.List.GetD

getD and getI #

This file provides theorems for working with the getD and getI functions. These are used to access an element of a list by numerical index, with a default value as a fallback when the index is out of range.

@[simp]
theorem List.getD_nil {α : Type u} (n : ) (d : α) :
List.getD [] n d = d
@[simp]
theorem List.getD_cons_zero {α : Type u} (x : α) (xs : List α) (d : α) :
List.getD (x :: xs) 0 d = x
@[simp]
theorem List.getD_cons_succ {α : Type u} (x : α) (xs : List α) (n : ) (d : α) :
List.getD (x :: xs) (n + 1) d = List.getD xs n d
theorem List.getD_eq_get {α : Type u} (l : List α) (d : α) {n : } (hn : n < List.length l) :
List.getD l n d = List.get l { val := n, isLt := hn }
@[simp]
theorem List.getD_map {α : Type u} {β : Type v} (l : List α) (d : α) {n : } (f : αβ) :
List.getD (List.map f l) n (f d) = f (List.getD l n d)
theorem List.getD_eq_default {α : Type u} (l : List α) (d : α) {n : } (hn : List.length l n) :
List.getD l n d = d
def List.decidableGetDNilNe {α : Type u_1} (a : α) :
DecidablePred fun (i : ) => List.getD [] i a a

An empty list can always be decidably checked for the presence of an element. Not an instance because it would clash with DecidableEq α.

Equations
Instances For
    @[simp]
    theorem List.getD_singleton_default_eq {α : Type u} (d : α) (n : ) :
    List.getD [d] n d = d
    @[simp]
    theorem List.getD_replicate_default_eq {α : Type u} (d : α) (r : ) (n : ) :
    theorem List.getD_append {α : Type u} (l : List α) (l' : List α) (d : α) (n : ) (h : n < List.length l) :
    List.getD (l ++ l') n d = List.getD l n d
    theorem List.getD_append_right {α : Type u} (l : List α) (l' : List α) (d : α) (n : ) (h : List.length l n) :
    List.getD (l ++ l') n d = List.getD l' (n - List.length l) d
    theorem List.getD_eq_getD_get? {α : Type u} (l : List α) (d : α) (n : ) :
    @[simp]
    theorem List.getI_nil {α : Type u} (n : ) [Inhabited α] :
    List.getI [] n = default
    @[simp]
    theorem List.getI_cons_zero {α : Type u} (x : α) (xs : List α) [Inhabited α] :
    List.getI (x :: xs) 0 = x
    @[simp]
    theorem List.getI_cons_succ {α : Type u} (x : α) (xs : List α) (n : ) [Inhabited α] :
    List.getI (x :: xs) (n + 1) = List.getI xs n
    theorem List.getI_eq_get {α : Type u} (l : List α) [Inhabited α] {n : } (hn : n < List.length l) :
    List.getI l n = List.get l { val := n, isLt := hn }
    theorem List.getI_eq_default {α : Type u} (l : List α) [Inhabited α] {n : } (hn : List.length l n) :
    List.getI l n = default
    theorem List.getD_default_eq_getI {α : Type u} (l : List α) [Inhabited α] {n : } :
    List.getD l n default = List.getI l n
    theorem List.getI_append {α : Type u} [Inhabited α] (l : List α) (l' : List α) (n : ) (h : n < List.length l) :
    List.getI (l ++ l') n = List.getI l n
    theorem List.getI_append_right {α : Type u} [Inhabited α] (l : List α) (l' : List α) (n : ) (h : List.length l n) :
    List.getI (l ++ l') n = List.getI l' (n - List.length l)
    theorem List.getI_eq_iget_get? {α : Type u} (l : List α) [Inhabited α] (n : ) :
    theorem List.getI_zero_eq_headI {α : Type u} (l : List α) [Inhabited α] :