Documentation

Mathlib.Data.List.Perm

List Permutations #

This file introduces the List.Perm relation, which is true if two lists are permutations of one another.

Notation #

The notation ~ is used for permutation equivalence.

instance List.instTransListPerm {α : Type u_3} :
Trans List.Perm List.Perm List.Perm
Equations
  • List.instTransListPerm = { trans := }
theorem List.perm_rfl {α : Type u_1} {l : List α} :
theorem List.Perm.subset_congr_left {α : Type u_1} {l₁ : List α} {l₂ : List α} {l₃ : List α} (h : List.Perm l₁ l₂) :
l₁ l₃ l₂ l₃
theorem List.Perm.subset_congr_right {α : Type u_1} {l₁ : List α} {l₂ : List α} {l₃ : List α} (h : List.Perm l₁ l₂) :
l₃ l₁ l₃ l₂
theorem List.perm_comp_perm {α : Type u_1} :
Relation.Comp List.Perm List.Perm = List.Perm
theorem List.perm_comp_forall₂ {α : Type u_1} {β : Type u_2} {r : αβProp} {l : List α} {u : List α} {v : List β} (hlu : List.Perm l u) (huv : List.Forall₂ r u v) :
Relation.Comp (List.Forall₂ r) List.Perm l v
theorem List.forall₂_comp_perm_eq_perm_comp_forall₂ {α : Type u_1} {β : Type u_2} {r : αβProp} :
theorem List.rel_perm_imp {α : Type u_1} {β : Type u_2} {r : αβProp} (hr : Relator.RightUnique r) :
(List.Forall₂ r List.Forall₂ r fun (x x_1 : Prop) => xx_1) List.Perm List.Perm
theorem List.rel_perm {α : Type u_1} {β : Type u_2} {r : αβProp} (hr : Relator.BiUnique r) :
(List.Forall₂ r List.Forall₂ r fun (x x_1 : Prop) => x x_1) List.Perm List.Perm
theorem List.subperm_iff {α : Type u_1} {l₁ : List α} {l₂ : List α} :
List.Subperm l₁ l₂ ∃ (l : List α), List.Perm l l₂ List.Sublist l₁ l
@[simp]
theorem List.subperm_singleton_iff {α : Type u_1} {l : List α} {a : α} :
List.Subperm l [a] l = [] l = [a]
@[simp]
theorem List.subperm_nil {α : Type u_1} {l : List α} :
List.Subperm l [] l = []
theorem List.count_eq_count_filter_add {α : Type u_1} [DecidableEq α] (P : αProp) [DecidablePred P] (l : List α) (a : α) :
List.count a l = List.count a (List.filter (fun (b : α) => decide (P b)) l) + List.count a (List.filter (fun (x : α) => decide ¬P x) l)
theorem List.Perm.foldl_eq {α : Type u_1} {β : Type u_2} {f : βαβ} {l₁ : List α} {l₂ : List α} (rcomm : RightCommutative f) (p : List.Perm l₁ l₂) (b : β) :
List.foldl f b l₁ = List.foldl f b l₂
theorem List.Perm.foldr_eq {α : Type u_1} {β : Type u_2} {f : αββ} {l₁ : List α} {l₂ : List α} (lcomm : LeftCommutative f) (p : List.Perm l₁ l₂) (b : β) :
List.foldr f b l₁ = List.foldr f b l₂
theorem List.Perm.fold_op_eq {α : Type u_1} {op : ααα} [IA : Std.Associative op] [IC : Std.Commutative op] {l₁ : List α} {l₂ : List α} {a : α} (h : List.Perm l₁ l₂) :
List.foldl op a l₁ = List.foldl op a l₂
theorem List.perm_option_to_list {α : Type u_1} {o₁ : Option α} {o₂ : Option α} :
List.Perm (Option.toList o₁) (Option.toList o₂) o₁ = o₂
theorem List.subperm.of_cons {α : Type u_1} (a : α) {l₁ : List α} {l₂ : List α} :
List.Subperm (a :: l₁) (a :: l₂)List.Subperm l₁ l₂

Alias of the forward direction of List.subperm_cons.

theorem List.subperm.cons {α : Type u_1} (a : α) {l₁ : List α} {l₂ : List α} :
List.Subperm l₁ l₂List.Subperm (a :: l₁) (a :: l₂)

Alias of the reverse direction of List.subperm_cons.

theorem List.cons_subperm_of_mem {α : Type u_1} {a : α} {l₁ : List α} {l₂ : List α} (d₁ : List.Nodup l₁) (h₁ : al₁) (h₂ : a l₂) (s : List.Subperm l₁ l₂) :
List.Subperm (a :: l₁) l₂
theorem List.Nodup.subperm {α : Type u_1} {l₁ : List α} {l₂ : List α} (d : List.Nodup l₁) (H : l₁ l₂) :
List.Subperm l₁ l₂
theorem List.Perm.bagInter_right {α : Type u_1} [DecidableEq α] {l₁ : List α} {l₂ : List α} (t : List α) (h : List.Perm l₁ l₂) :
theorem List.Perm.bagInter_left {α : Type u_1} [DecidableEq α] (l : List α) {t₁ : List α} {t₂ : List α} (p : List.Perm t₁ t₂) :
theorem List.Perm.bagInter {α : Type u_1} [DecidableEq α] {l₁ : List α} {l₂ : List α} {t₁ : List α} {t₂ : List α} (hl : List.Perm l₁ l₂) (ht : List.Perm t₁ t₂) :
List.Perm (List.bagInter l₁ t₁) (List.bagInter l₂ t₂)
theorem List.perm_replicate_append_replicate {α : Type u_1} [DecidableEq α] {l : List α} {a : α} {b : α} {m : } {n : } (h : a b) :
theorem List.Perm.dedup {α : Type u_1} [DecidableEq α] {l₁ : List α} {l₂ : List α} (p : List.Perm l₁ l₂) :
theorem List.Perm.inter_append {α : Type u_1} [DecidableEq α] {l : List α} {t₁ : List α} {t₂ : List α} (h : List.Disjoint t₁ t₂) :
List.Perm (l (t₁ ++ t₂)) (l t₁ ++ l t₂)
theorem List.Perm.bind_left {α : Type u_1} {β : Type u_2} (l : List α) {f : αList β} {g : αList β} (h : al, List.Perm (f a) (g a)) :
theorem List.bind_append_perm {α : Type u_1} {β : Type u_2} (l : List α) (f : αList β) (g : αList β) :
List.Perm (List.bind l f ++ List.bind l g) (List.bind l fun (x : α) => f x ++ g x)
theorem List.map_append_bind_perm {α : Type u_1} {β : Type u_2} (l : List α) (f : αβ) (g : αList β) :
List.Perm (List.map f l ++ List.bind l g) (List.bind l fun (x : α) => f x :: g x)
theorem List.Perm.product_right {α : Type u_1} {β : Type u_2} {l₁ : List α} {l₂ : List α} (t₁ : List β) (p : List.Perm l₁ l₂) :
List.Perm (List.product l₁ t₁) (List.product l₂ t₁)
theorem List.Perm.product_left {α : Type u_1} {β : Type u_2} (l : List α) {t₁ : List β} {t₂ : List β} (p : List.Perm t₁ t₂) :
theorem List.Perm.product {α : Type u_1} {β : Type u_2} {l₁ : List α} {l₂ : List α} {t₁ : List β} {t₂ : List β} (p₁ : List.Perm l₁ l₂) (p₂ : List.Perm t₁ t₂) :
List.Perm (List.product l₁ t₁) (List.product l₂ t₂)
theorem List.perm_lookmap {α : Type u_1} (f : αOption α) {l₁ : List α} {l₂ : List α} (H : List.Pairwise (fun (a b : α) => cf a, df b, a = b c = d) l₁) (p : List.Perm l₁ l₂) :
theorem List.Perm.take_inter {α : Type u_3} [DecidableEq α] {xs : List α} {ys : List α} (n : ) (h : List.Perm xs ys) (h' : List.Nodup ys) :
theorem List.Perm.drop_inter {α : Type u_3} [DecidableEq α] {xs : List α} {ys : List α} (n : ) (h : List.Perm xs ys) (h' : List.Nodup ys) :
theorem List.Perm.dropSlice_inter {α : Type u_3} [DecidableEq α] {xs : List α} {ys : List α} (n : ) (m : ) (h : List.Perm xs ys) (h' : List.Nodup ys) :
theorem List.perm_of_mem_permutationsAux {α : Type u_1} {ts : List α} {is : List α} {l : List α} :
l List.permutationsAux ts isList.Perm l (ts ++ is)
theorem List.perm_of_mem_permutations {α : Type u_1} {l₁ : List α} {l₂ : List α} (h : l₁ List.permutations l₂) :
List.Perm l₁ l₂
theorem List.mem_permutations_of_perm_lemma {α : Type u_1} {is : List α} {l : List α} (H : List.Perm l ([] ++ is)(∃ (ts' : List α) (_ : List.Perm ts' []), l = ts' ++ is) l List.permutationsAux is []) :
theorem List.mem_permutationsAux_of_perm {α : Type u_1} {ts : List α} {is : List α} {l : List α} :
List.Perm l (is ++ ts)(∃ (is' : List α) (_ : List.Perm is' is), l = is' ++ ts) l List.permutationsAux ts is
@[simp]
theorem List.mem_permutations {α : Type u_1} {s : List α} {t : List α} :
@[simp]
theorem List.mem_permutations' {α : Type u_1} {s : List α} {t : List α} :
theorem List.Perm.permutations {α : Type u_1} {s : List α} {t : List α} (h : List.Perm s t) :
@[simp]
theorem List.nthLe_permutations'Aux {α : Type u_1} (s : List α) (x : α) (n : ) (hn : n < List.length (List.permutations'Aux x s)) :
theorem List.count_permutations'Aux_self {α : Type u_1} [DecidableEq α] (l : List α) (x : α) :
List.count (x :: l) (List.permutations'Aux x l) = List.length (List.takeWhile (fun (x_1 : α) => decide (x = x_1)) l) + 1
@[simp]
theorem List.length_permutations'Aux {α : Type u_1} (s : List α) (x : α) :
@[simp]
theorem List.permutations'Aux_nthLe_zero {α : Type u_1} (s : List α) (x : α) (hn : optParam (0 < List.length (List.permutations'Aux x s)) ) :
theorem List.nodup_permutations'Aux_of_not_mem {α : Type u_1} (s : List α) (x : α) (hx : xs) :
theorem List.nodup_permutations'Aux_iff {α : Type u_1} {s : List α} {x : α} :