Documentation

Mathlib.GroupTheory.Subgroup.Centralizer

Centralizers of subgroups #

def AddSubgroup.centralizer {G : Type u_1} [AddGroup G] (s : Set G) :

The centralizer of H is the additive subgroup of g : G commuting with every h : H.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem AddSubgroup.centralizer.proof_1 {G : Type u_1} [AddGroup G] (s : Set G) :
    ∀ {a b : G}, a (AddSubmonoid.centralizer s).carrierb (AddSubmonoid.centralizer s).carriera + b (AddSubmonoid.centralizer s).carrier
    def Subgroup.centralizer {G : Type u_1} [Group G] (s : Set G) :

    The centralizer of H is the subgroup of g : G commuting with every h : H.

    Equations
    Instances For
      theorem AddSubgroup.mem_centralizer_iff {G : Type u_1} [AddGroup G] {g : G} {s : Set G} :
      g AddSubgroup.centralizer s hs, h + g = g + h
      theorem Subgroup.mem_centralizer_iff {G : Type u_1} [Group G] {g : G} {s : Set G} :
      g Subgroup.centralizer s hs, h * g = g * h
      theorem AddSubgroup.mem_centralizer_iff_commutator_eq_zero {G : Type u_1} [AddGroup G] {g : G} {s : Set G} :
      g AddSubgroup.centralizer s hs, h + g + -h + -g = 0
      theorem Subgroup.mem_centralizer_iff_commutator_eq_one {G : Type u_1} [Group G] {g : G} {s : Set G} :
      g Subgroup.centralizer s hs, h * g * h⁻¹ * g⁻¹ = 1
      theorem Subgroup.centralizer_le {G : Type u_1} [Group G] {s : Set G} {t : Set G} (h : s t) :