Pull an additive subgroup back to an opposite additive subgroup along AddOpposite.unop
Equations
- AddSubgroup.op H = { toAddSubmonoid := { toAddSubsemigroup := { carrier := AddOpposite.unop ⁻¹' ↑H, add_mem' := ⋯ }, zero_mem' := ⋯ }, neg_mem' := ⋯ }
Instances For
theorem
AddSubgroup.op.proof_1
{G : Type u_1}
[AddGroup G]
(H : AddSubgroup G)
:
∀ {a b : Gᵃᵒᵖ}, a ∈ AddOpposite.unop ⁻¹' ↑H → b ∈ AddOpposite.unop ⁻¹' ↑H → AddOpposite.unop b + AddOpposite.unop a ∈ H
theorem
AddSubgroup.op.proof_2
{G : Type u_1}
[AddGroup G]
(H : AddSubgroup G)
:
∀ {x : Gᵃᵒᵖ}, AddOpposite.unop x ∈ H → -AddOpposite.unop x ∈ H
@[simp]
theorem
AddSubgroup.op_coe
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup G)
:
↑(AddSubgroup.op H) = AddOpposite.unop ⁻¹' ↑H
@[simp]
theorem
Subgroup.op_coe
{G : Type u_2}
[Group G]
(H : Subgroup G)
:
↑(Subgroup.op H) = MulOpposite.unop ⁻¹' ↑H
Pull a subgroup back to an opposite subgroup along MulOpposite.unop
Equations
- Subgroup.op H = { toSubmonoid := { toSubsemigroup := { carrier := MulOpposite.unop ⁻¹' ↑H, mul_mem' := ⋯ }, one_mem' := ⋯ }, inv_mem' := ⋯ }
Instances For
@[simp]
theorem
AddSubgroup.mem_op
{G : Type u_2}
[AddGroup G]
{x : Gᵃᵒᵖ}
{S : AddSubgroup G}
:
x ∈ AddSubgroup.op S ↔ AddOpposite.unop x ∈ S
@[simp]
theorem
Subgroup.mem_op
{G : Type u_2}
[Group G]
{x : Gᵐᵒᵖ}
{S : Subgroup G}
:
x ∈ Subgroup.op S ↔ MulOpposite.unop x ∈ S
@[simp]
theorem
AddSubgroup.op_toAddSubmonoid
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup G)
:
(AddSubgroup.op H).toAddSubmonoid = AddSubmonoid.op H.toAddSubmonoid
@[simp]
theorem
Subgroup.op_toSubmonoid
{G : Type u_2}
[Group G]
(H : Subgroup G)
:
(Subgroup.op H).toSubmonoid = Submonoid.op H.toSubmonoid
Pull an opposite additive subgroup back to an additive subgroup along AddOpposite.op
Equations
- AddSubgroup.unop H = { toAddSubmonoid := { toAddSubsemigroup := { carrier := AddOpposite.op ⁻¹' ↑H, add_mem' := ⋯ }, zero_mem' := ⋯ }, neg_mem' := ⋯ }
Instances For
theorem
AddSubgroup.unop.proof_3
{G : Type u_1}
[AddGroup G]
(H : AddSubgroup Gᵃᵒᵖ)
:
∀ {x : G}, AddOpposite.op x ∈ H → -AddOpposite.op x ∈ H
@[simp]
theorem
AddSubgroup.unop_coe
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup Gᵃᵒᵖ)
:
↑(AddSubgroup.unop H) = AddOpposite.op ⁻¹' ↑H
@[simp]
theorem
Subgroup.unop_coe
{G : Type u_2}
[Group G]
(H : Subgroup Gᵐᵒᵖ)
:
↑(Subgroup.unop H) = MulOpposite.op ⁻¹' ↑H
Pull an opposite subgroup back to a subgroup along MulOpposite.op
Equations
- Subgroup.unop H = { toSubmonoid := { toSubsemigroup := { carrier := MulOpposite.op ⁻¹' ↑H, mul_mem' := ⋯ }, one_mem' := ⋯ }, inv_mem' := ⋯ }
Instances For
@[simp]
theorem
AddSubgroup.mem_unop
{G : Type u_2}
[AddGroup G]
{x : G}
{S : AddSubgroup Gᵃᵒᵖ}
:
x ∈ AddSubgroup.unop S ↔ AddOpposite.op x ∈ S
@[simp]
theorem
Subgroup.mem_unop
{G : Type u_2}
[Group G]
{x : G}
{S : Subgroup Gᵐᵒᵖ}
:
x ∈ Subgroup.unop S ↔ MulOpposite.op x ∈ S
@[simp]
theorem
AddSubgroup.unop_toAddSubmonoid
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup Gᵃᵒᵖ)
:
(AddSubgroup.unop H).toAddSubmonoid = AddSubmonoid.unop H.toAddSubmonoid
@[simp]
theorem
Subgroup.unop_toSubmonoid
{G : Type u_2}
[Group G]
(H : Subgroup Gᵐᵒᵖ)
:
(Subgroup.unop H).toSubmonoid = Submonoid.unop H.toSubmonoid
@[simp]
theorem
AddSubgroup.unop_op
{G : Type u_2}
[AddGroup G]
(S : AddSubgroup G)
:
AddSubgroup.unop (AddSubgroup.op S) = S
@[simp]
theorem
Subgroup.unop_op
{G : Type u_2}
[Group G]
(S : Subgroup G)
:
Subgroup.unop (Subgroup.op S) = S
@[simp]
theorem
AddSubgroup.op_unop
{G : Type u_2}
[AddGroup G]
(S : AddSubgroup Gᵃᵒᵖ)
:
AddSubgroup.op (AddSubgroup.unop S) = S
@[simp]
theorem
Subgroup.op_unop
{G : Type u_2}
[Group G]
(S : Subgroup Gᵐᵒᵖ)
:
Subgroup.op (Subgroup.unop S) = S
Lattice results #
theorem
AddSubgroup.op_le_iff
{G : Type u_2}
[AddGroup G]
{S₁ : AddSubgroup G}
{S₂ : AddSubgroup Gᵃᵒᵖ}
:
AddSubgroup.op S₁ ≤ S₂ ↔ S₁ ≤ AddSubgroup.unop S₂
theorem
Subgroup.op_le_iff
{G : Type u_2}
[Group G]
{S₁ : Subgroup G}
{S₂ : Subgroup Gᵐᵒᵖ}
:
Subgroup.op S₁ ≤ S₂ ↔ S₁ ≤ Subgroup.unop S₂
theorem
AddSubgroup.le_op_iff
{G : Type u_2}
[AddGroup G]
{S₁ : AddSubgroup Gᵃᵒᵖ}
{S₂ : AddSubgroup G}
:
S₁ ≤ AddSubgroup.op S₂ ↔ AddSubgroup.unop S₁ ≤ S₂
theorem
Subgroup.le_op_iff
{G : Type u_2}
[Group G]
{S₁ : Subgroup Gᵐᵒᵖ}
{S₂ : Subgroup G}
:
S₁ ≤ Subgroup.op S₂ ↔ Subgroup.unop S₁ ≤ S₂
@[simp]
theorem
AddSubgroup.op_le_op_iff
{G : Type u_2}
[AddGroup G]
{S₁ : AddSubgroup G}
{S₂ : AddSubgroup G}
:
AddSubgroup.op S₁ ≤ AddSubgroup.op S₂ ↔ S₁ ≤ S₂
@[simp]
theorem
Subgroup.op_le_op_iff
{G : Type u_2}
[Group G]
{S₁ : Subgroup G}
{S₂ : Subgroup G}
:
Subgroup.op S₁ ≤ Subgroup.op S₂ ↔ S₁ ≤ S₂
@[simp]
theorem
AddSubgroup.unop_le_unop_iff
{G : Type u_2}
[AddGroup G]
{S₁ : AddSubgroup Gᵃᵒᵖ}
{S₂ : AddSubgroup Gᵃᵒᵖ}
:
AddSubgroup.unop S₁ ≤ AddSubgroup.unop S₂ ↔ S₁ ≤ S₂
@[simp]
theorem
Subgroup.unop_le_unop_iff
{G : Type u_2}
[Group G]
{S₁ : Subgroup Gᵐᵒᵖ}
{S₂ : Subgroup Gᵐᵒᵖ}
:
Subgroup.unop S₁ ≤ Subgroup.unop S₂ ↔ S₁ ≤ S₂
@[simp]
theorem
AddSubgroup.opEquiv_symm_apply
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup Gᵃᵒᵖ)
:
(RelIso.symm AddSubgroup.opEquiv) H = AddSubgroup.unop H
@[simp]
theorem
Subgroup.opEquiv_symm_apply
{G : Type u_2}
[Group G]
(H : Subgroup Gᵐᵒᵖ)
:
(RelIso.symm Subgroup.opEquiv) H = Subgroup.unop H
@[simp]
theorem
AddSubgroup.opEquiv_apply
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup G)
:
AddSubgroup.opEquiv H = AddSubgroup.op H
@[simp]
theorem
Subgroup.opEquiv_apply
{G : Type u_2}
[Group G]
(H : Subgroup G)
:
Subgroup.opEquiv H = Subgroup.op H
theorem
AddSubgroup.op_sup
{G : Type u_2}
[AddGroup G]
(S₁ : AddSubgroup G)
(S₂ : AddSubgroup G)
:
AddSubgroup.op (S₁ ⊔ S₂) = AddSubgroup.op S₁ ⊔ AddSubgroup.op S₂
theorem
Subgroup.op_sup
{G : Type u_2}
[Group G]
(S₁ : Subgroup G)
(S₂ : Subgroup G)
:
Subgroup.op (S₁ ⊔ S₂) = Subgroup.op S₁ ⊔ Subgroup.op S₂
theorem
AddSubgroup.unop_sup
{G : Type u_2}
[AddGroup G]
(S₁ : AddSubgroup Gᵃᵒᵖ)
(S₂ : AddSubgroup Gᵃᵒᵖ)
:
AddSubgroup.unop (S₁ ⊔ S₂) = AddSubgroup.unop S₁ ⊔ AddSubgroup.unop S₂
theorem
Subgroup.unop_sup
{G : Type u_2}
[Group G]
(S₁ : Subgroup Gᵐᵒᵖ)
(S₂ : Subgroup Gᵐᵒᵖ)
:
Subgroup.unop (S₁ ⊔ S₂) = Subgroup.unop S₁ ⊔ Subgroup.unop S₂
theorem
AddSubgroup.op_inf
{G : Type u_2}
[AddGroup G]
(S₁ : AddSubgroup G)
(S₂ : AddSubgroup G)
:
AddSubgroup.op (S₁ ⊓ S₂) = AddSubgroup.op S₁ ⊓ AddSubgroup.op S₂
theorem
Subgroup.op_inf
{G : Type u_2}
[Group G]
(S₁ : Subgroup G)
(S₂ : Subgroup G)
:
Subgroup.op (S₁ ⊓ S₂) = Subgroup.op S₁ ⊓ Subgroup.op S₂
theorem
AddSubgroup.unop_inf
{G : Type u_2}
[AddGroup G]
(S₁ : AddSubgroup Gᵃᵒᵖ)
(S₂ : AddSubgroup Gᵃᵒᵖ)
:
AddSubgroup.unop (S₁ ⊓ S₂) = AddSubgroup.unop S₁ ⊓ AddSubgroup.unop S₂
theorem
Subgroup.unop_inf
{G : Type u_2}
[Group G]
(S₁ : Subgroup Gᵐᵒᵖ)
(S₂ : Subgroup Gᵐᵒᵖ)
:
Subgroup.unop (S₁ ⊓ S₂) = Subgroup.unop S₁ ⊓ Subgroup.unop S₂
theorem
AddSubgroup.op_sSup
{G : Type u_2}
[AddGroup G]
(S : Set (AddSubgroup G))
:
AddSubgroup.op (sSup S) = sSup (AddSubgroup.unop ⁻¹' S)
theorem
AddSubgroup.unop_sSup
{G : Type u_2}
[AddGroup G]
(S : Set (AddSubgroup Gᵃᵒᵖ))
:
AddSubgroup.unop (sSup S) = sSup (AddSubgroup.op ⁻¹' S)
theorem
AddSubgroup.op_sInf
{G : Type u_2}
[AddGroup G]
(S : Set (AddSubgroup G))
:
AddSubgroup.op (sInf S) = sInf (AddSubgroup.unop ⁻¹' S)
theorem
AddSubgroup.unop_sInf
{G : Type u_2}
[AddGroup G]
(S : Set (AddSubgroup Gᵃᵒᵖ))
:
AddSubgroup.unop (sInf S) = sInf (AddSubgroup.op ⁻¹' S)
theorem
AddSubgroup.op_iSup
{ι : Sort u_1}
{G : Type u_2}
[AddGroup G]
(S : ι → AddSubgroup G)
:
AddSubgroup.op (iSup S) = ⨆ (i : ι), AddSubgroup.op (S i)
theorem
Subgroup.op_iSup
{ι : Sort u_1}
{G : Type u_2}
[Group G]
(S : ι → Subgroup G)
:
Subgroup.op (iSup S) = ⨆ (i : ι), Subgroup.op (S i)
theorem
AddSubgroup.unop_iSup
{ι : Sort u_1}
{G : Type u_2}
[AddGroup G]
(S : ι → AddSubgroup Gᵃᵒᵖ)
:
AddSubgroup.unop (iSup S) = ⨆ (i : ι), AddSubgroup.unop (S i)
theorem
Subgroup.unop_iSup
{ι : Sort u_1}
{G : Type u_2}
[Group G]
(S : ι → Subgroup Gᵐᵒᵖ)
:
Subgroup.unop (iSup S) = ⨆ (i : ι), Subgroup.unop (S i)
theorem
AddSubgroup.op_iInf
{ι : Sort u_1}
{G : Type u_2}
[AddGroup G]
(S : ι → AddSubgroup G)
:
AddSubgroup.op (iInf S) = ⨅ (i : ι), AddSubgroup.op (S i)
theorem
Subgroup.op_iInf
{ι : Sort u_1}
{G : Type u_2}
[Group G]
(S : ι → Subgroup G)
:
Subgroup.op (iInf S) = ⨅ (i : ι), Subgroup.op (S i)
theorem
AddSubgroup.unop_iInf
{ι : Sort u_1}
{G : Type u_2}
[AddGroup G]
(S : ι → AddSubgroup Gᵃᵒᵖ)
:
AddSubgroup.unop (iInf S) = ⨅ (i : ι), AddSubgroup.unop (S i)
theorem
Subgroup.unop_iInf
{ι : Sort u_1}
{G : Type u_2}
[Group G]
(S : ι → Subgroup Gᵐᵒᵖ)
:
Subgroup.unop (iInf S) = ⨅ (i : ι), Subgroup.unop (S i)
theorem
AddSubgroup.op_closure
{G : Type u_2}
[AddGroup G]
(s : Set G)
:
AddSubgroup.op (AddSubgroup.closure s) = AddSubgroup.closure (AddOpposite.unop ⁻¹' s)
theorem
Subgroup.op_closure
{G : Type u_2}
[Group G]
(s : Set G)
:
Subgroup.op (Subgroup.closure s) = Subgroup.closure (MulOpposite.unop ⁻¹' s)
theorem
AddSubgroup.unop_closure
{G : Type u_2}
[AddGroup G]
(s : Set Gᵃᵒᵖ)
:
AddSubgroup.unop (AddSubgroup.closure s) = AddSubgroup.closure (AddOpposite.op ⁻¹' s)
theorem
Subgroup.unop_closure
{G : Type u_2}
[Group G]
(s : Set Gᵐᵒᵖ)
:
Subgroup.unop (Subgroup.closure s) = Subgroup.closure (MulOpposite.op ⁻¹' s)
Bijection between an additive subgroup H
and its opposite.
Equations
- AddSubgroup.equivOp H = Equiv.subtypeEquiv AddOpposite.opEquiv ⋯
Instances For
@[simp]
theorem
Subgroup.equivOp_apply_coe
{G : Type u_2}
[Group G]
(H : Subgroup G)
(a : { a : G // (fun (x : G) => x ∈ H) a })
:
↑((Subgroup.equivOp H) a) = MulOpposite.op ↑a
@[simp]
theorem
AddSubgroup.equivOp_apply_coe
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup G)
(a : { a : G // (fun (x : G) => x ∈ H) a })
:
↑((AddSubgroup.equivOp H) a) = AddOpposite.op ↑a
@[simp]
theorem
AddSubgroup.equivOp_symm_apply_coe
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup G)
(b : { b : Gᵃᵒᵖ // (fun (x : Gᵃᵒᵖ) => x ∈ AddSubgroup.op H) b })
:
↑((AddSubgroup.equivOp H).symm b) = AddOpposite.unop ↑b
@[simp]
theorem
Subgroup.equivOp_symm_apply_coe
{G : Type u_2}
[Group G]
(H : Subgroup G)
(b : { b : Gᵐᵒᵖ // (fun (x : Gᵐᵒᵖ) => x ∈ Subgroup.op H) b })
:
↑((Subgroup.equivOp H).symm b) = MulOpposite.unop ↑b
Bijection between a subgroup H
and its opposite.
Equations
- Subgroup.equivOp H = Equiv.subtypeEquiv MulOpposite.opEquiv ⋯
Instances For
instance
AddSubgroup.instEncodableSubtypeAddOppositeMemAddSubgroupInstAddGroupInstMembershipInstSetLikeAddSubgroupOp
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup G)
[Encodable ↥H]
:
Encodable ↥(AddSubgroup.op H)
instance
Subgroup.instEncodableSubtypeMulOppositeMemSubgroupInstGroupInstMembershipInstSetLikeSubgroupOp
{G : Type u_2}
[Group G]
(H : Subgroup G)
[Encodable ↥H]
:
Encodable ↥(Subgroup.op H)
instance
AddSubgroup.instCountableSubtypeAddOppositeMemAddSubgroupInstAddGroupInstMembershipInstSetLikeAddSubgroupOp
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup G)
[Countable ↥H]
:
Countable ↥(AddSubgroup.op H)
Equations
- ⋯ = ⋯
instance
Subgroup.instCountableSubtypeMulOppositeMemSubgroupInstGroupInstMembershipInstSetLikeSubgroupOp
{G : Type u_2}
[Group G]
(H : Subgroup G)
[Countable ↥H]
:
Countable ↥(Subgroup.op H)
Equations
- ⋯ = ⋯
theorem
AddSubgroup.vadd_opposite_add
{G : Type u_2}
[AddGroup G]
{H : AddSubgroup G}
(x : G)
(g : G)
(h : ↥(AddSubgroup.op H))
: