Iterations of a function #
In this file we prove simple properties of Nat.iterate f n a.k.a. f^[n]:
-
iterate_zero,iterate_succ,iterate_succ',iterate_add,iterate_mul: formulas forf^[0],f^[n+1](two versions),f^[n+m], andf^[n*m]; -
iterate_id:id^[n]=id; -
Injective.iterate,Surjective.iterate,Bijective.iterate: iterates of an injective/surjective/bijective function belong to the same class; -
LeftInverse.iterate,RightInverse.iterate,Commute.iterate_left,Commute.iterate_right,Commute.iterate_iterate: some properties of pairs of functions survive under iterations -
iterate_fixed,Function.Semiconj.iterate_*,Function.Semiconj₂.iterate: ifffixes a point (resp., semiconjugates unary/binary operations), then so doesf^[n].
Iterate a function.
Equations
- One or more equations did not get rendered due to their size.
Instances For
A recursor for the iterate of a function.
Equations
- Function.Iterate.rec p h ha 0 = ha
- Function.Iterate.rec p h ha (Nat.succ m) = Function.Iterate.rec p h (h a ha) m