Documentation

Mathlib.RingTheory.Ideal.Colon

The colon ideal #

This file defines Submodule.colon N P as the ideal of all elements r : R such that r • P ⊆ N. The normal notation for this would be N : P which has already been taken by type theory.

def Submodule.colon {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (N : Submodule R M) (P : Submodule R M) :

N.colon P is the ideal of all elements r : R such that r • P ⊆ N.

Equations
Instances For
    theorem Submodule.mem_colon {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {N : Submodule R M} {P : Submodule R M} {r : R} :
    r Submodule.colon N P pP, r p N
    theorem Submodule.mem_colon' {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {N : Submodule R M} {P : Submodule R M} {r : R} :
    r Submodule.colon N P P Submodule.comap (r LinearMap.id) N
    @[simp]
    theorem Submodule.colon_top {R : Type u_1} [CommRing R] {I : Ideal R} :
    @[simp]
    theorem Submodule.colon_mono {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {N₁ : Submodule R M} {N₂ : Submodule R M} {P₁ : Submodule R M} {P₂ : Submodule R M} (hn : N₁ N₂) (hp : P₁ P₂) :
    Submodule.colon N₁ P₂ Submodule.colon N₂ P₁
    theorem Submodule.iInf_colon_iSup {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (ι₁ : Sort u_6) (f : ι₁Submodule R M) (ι₂ : Sort u_7) (g : ι₂Submodule R M) :
    Submodule.colon (⨅ (i : ι₁), f i) (⨆ (j : ι₂), g j) = ⨅ (i : ι₁), ⨅ (j : ι₂), Submodule.colon (f i) (g j)
    @[simp]
    theorem Submodule.mem_colon_singleton {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {N : Submodule R M} {x : M} {r : R} :
    @[simp]
    theorem Ideal.mem_colon_singleton {R : Type u_1} [CommRing R] {I : Ideal R} {x : R} {r : R} :