Primary ideals #
A proper ideal I is primary iff xy ∈ I implies x ∈ I or y ∈ radical I.
Main definitions #
A proper ideal I is primary iff xy ∈ I implies x ∈ I or y ∈ radical I.
Instances For
theorem
Ideal.IsPrime.isPrimary
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
(hi : Ideal.IsPrime I)
 :
theorem
Ideal.mem_radical_of_pow_mem
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
{x : R}
{m : ℕ}
(hx : x ^ m ∈ Ideal.radical I)
 :
x ∈ Ideal.radical I
theorem
Ideal.isPrime_radical
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
(hi : Ideal.IsPrimary I)
 :
theorem
Ideal.isPrimary_inf
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
{J : Ideal R}
(hi : Ideal.IsPrimary I)
(hj : Ideal.IsPrimary J)
(hij : Ideal.radical I = Ideal.radical J)
 :
Ideal.IsPrimary (I ⊓ J)