Primary ideals #
A proper ideal I
is primary iff xy ∈ I
implies x ∈ I
or y ∈ radical I
.
Main definitions #
A proper ideal I
is primary iff xy ∈ I
implies x ∈ I
or y ∈ radical I
.
Instances For
theorem
Ideal.IsPrime.isPrimary
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
(hi : Ideal.IsPrime I)
:
theorem
Ideal.mem_radical_of_pow_mem
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
{x : R}
{m : ℕ}
(hx : x ^ m ∈ Ideal.radical I)
:
x ∈ Ideal.radical I
theorem
Ideal.isPrime_radical
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
(hi : Ideal.IsPrimary I)
:
theorem
Ideal.isPrimary_inf
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
{J : Ideal R}
(hi : Ideal.IsPrimary I)
(hj : Ideal.IsPrimary J)
(hij : Ideal.radical I = Ideal.radical J)
:
Ideal.IsPrimary (I ⊓ J)