Documentation

Mathlib.RingTheory.Ideal.IsPrimary

Primary ideals #

A proper ideal I is primary iff xy ∈ I implies x ∈ I or y ∈ radical I.

Main definitions #

def Ideal.IsPrimary {R : Type u_1} [CommSemiring R] (I : Ideal R) :

A proper ideal I is primary iff xy ∈ I implies x ∈ I or y ∈ radical I.

Equations
Instances For
    theorem Ideal.mem_radical_of_pow_mem {R : Type u_1} [CommSemiring R] {I : Ideal R} {x : R} {m : } (hx : x ^ m Ideal.radical I) :
    theorem Ideal.isPrimary_inf {R : Type u_1} [CommSemiring R] {I : Ideal R} {J : Ideal R} (hi : Ideal.IsPrimary I) (hj : Ideal.IsPrimary J) (hij : Ideal.radical I = Ideal.radical J) :