Definition of nilpotent elements #
This file defines the notion of a nilpotent element and proves the immediate consequences.
For results that require further theory, see Mathlib.RingTheory.Nilpotent.Basic
and Mathlib.RingTheory.Nilpotent.Lemmas
.
Main definitions #
An element is said to be nilpotent if some natural-number-power of it equals zero.
Note that we require only the bare minimum assumptions for the definition to make sense. Even
MonoidWithZero
is too strong since nilpotency is important in the study of rings that are only
power-associative.
Equations
- IsNilpotent x = ∃ (n : ℕ), x ^ n = 0
Instances For
@[simp]
theorem
IsNilpotent.pow_succ
(n : ℕ)
{S : Type u_3}
[MonoidWithZero S]
{x : S}
(hx : IsNilpotent x)
:
IsNilpotent (x ^ Nat.succ n)
theorem
IsNilpotent.of_pow
{R : Type u_1}
[MonoidWithZero R]
{x : R}
{m : ℕ}
(h : IsNilpotent (x ^ m))
:
theorem
IsNilpotent.pow_of_pos
{n : ℕ}
{S : Type u_3}
[MonoidWithZero S]
{x : S}
(hx : IsNilpotent x)
(hn : n ≠ 0)
:
IsNilpotent (x ^ n)
@[simp]
theorem
IsNilpotent.pow_iff_pos
{n : ℕ}
{S : Type u_3}
[MonoidWithZero S]
{x : S}
(hn : n ≠ 0)
:
IsNilpotent (x ^ n) ↔ IsNilpotent x
theorem
IsNilpotent.map
{R : Type u_1}
{S : Type u_2}
[MonoidWithZero R]
[MonoidWithZero S]
{r : R}
{F : Type u_3}
[FunLike F R S]
[MonoidWithZeroHomClass F R S]
(hr : IsNilpotent r)
(f : F)
:
IsNilpotent (f r)
theorem
IsNilpotent.map_iff
{R : Type u_1}
{S : Type u_2}
[MonoidWithZero R]
[MonoidWithZero S]
{r : R}
{F : Type u_3}
[FunLike F R S]
[MonoidWithZeroHomClass F R S]
{f : F}
(hf : Function.Injective ⇑f)
:
IsNilpotent (f r) ↔ IsNilpotent r
theorem
IsUnit.isNilpotent_mul_unit_of_commute_iff
{R : Type u_1}
[MonoidWithZero R]
{r : R}
{u : R}
(hu : IsUnit u)
(h_comm : Commute r u)
:
IsNilpotent (r * u) ↔ IsNilpotent r
theorem
IsUnit.isNilpotent_unit_mul_of_commute_iff
{R : Type u_1}
[MonoidWithZero R]
{r : R}
{u : R}
(hu : IsUnit u)
(h_comm : Commute r u)
:
IsNilpotent (u * r) ↔ IsNilpotent r
If x
is nilpotent, the nilpotency class is the smallest natural number k
such that
x ^ k = 0
. If x
is not nilpotent, the nilpotency class takes the junk value 0
.
Instances For
@[simp]
theorem
nilpotencyClass_eq_zero_of_subsingleton
{R : Type u_1}
{x : R}
[Zero R]
[Pow R ℕ]
[Subsingleton R]
:
nilpotencyClass x = 0
theorem
isNilpotent_of_pos_nilpotencyClass
{R : Type u_1}
{x : R}
[Zero R]
[Pow R ℕ]
(hx : 0 < nilpotencyClass x)
:
theorem
pow_nilpotencyClass
{R : Type u_1}
{x : R}
[Zero R]
[Pow R ℕ]
(hx : IsNilpotent x)
:
x ^ nilpotencyClass x = 0
@[simp]
theorem
nilpotencyClass_zero
{R : Type u_1}
[MonoidWithZero R]
[Nontrivial R]
:
nilpotencyClass 0 = 1
@[simp]
theorem
pos_nilpotencyClass_iff
{R : Type u_1}
{x : R}
[MonoidWithZero R]
[Nontrivial R]
:
0 < nilpotencyClass x ↔ IsNilpotent x
theorem
pow_pred_nilpotencyClass
{R : Type u_1}
{x : R}
[MonoidWithZero R]
[Nontrivial R]
(hx : IsNilpotent x)
:
x ^ (nilpotencyClass x - 1) ≠ 0
theorem
eq_zero_of_nilpotencyClass_eq_one
{R : Type u_1}
{x : R}
[MonoidWithZero R]
(hx : nilpotencyClass x = 1)
:
x = 0
@[simp]
theorem
nilpotencyClass_eq_one
{R : Type u_1}
{x : R}
[MonoidWithZero R]
[Nontrivial R]
:
nilpotencyClass x = 1 ↔ x = 0
theorem
isReduced_iff
(R : Type u_3)
[Zero R]
[Pow R ℕ]
:
IsReduced R ↔ ∀ (x : R), IsNilpotent x → x = 0
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
theorem
IsNilpotent.eq_zero
{R : Type u_1}
{x : R}
[Zero R]
[Pow R ℕ]
[IsReduced R]
(h : IsNilpotent x)
:
x = 0
@[simp]
theorem
isNilpotent_iff_eq_zero
{R : Type u_1}
{x : R}
[MonoidWithZero R]
[IsReduced R]
:
IsNilpotent x ↔ x = 0
theorem
isReduced_of_injective
{R : Type u_1}
{S : Type u_2}
[MonoidWithZero R]
[MonoidWithZero S]
{F : Type u_3}
[FunLike F R S]
[MonoidWithZeroHomClass F R S]
(f : F)
(hf : Function.Injective ⇑f)
[IsReduced S]
:
theorem
Commute.isNilpotent_mul_left
{R : Type u_1}
{x : R}
{y : R}
[Semiring R]
(h_comm : Commute x y)
(h : IsNilpotent x)
:
IsNilpotent (x * y)
theorem
Commute.isNilpotent_mul_right
{R : Type u_1}
{x : R}
{y : R}
[Semiring R]
(h_comm : Commute x y)
(h : IsNilpotent y)
:
IsNilpotent (x * y)