Documentation

Pseudorandom.Additive.Stab

noncomputable def Stab {α : Type u_1} [Field α] [Fintype α] [DecidableEq α] (K : ) (A : Finset α) :
Equations
Instances For
    theorem Stab_inv' {α : Type u_1} [Field α] [Fintype α] [DecidableEq α] (A : Finset α) {K : } {a : α} (h : a Stab K A) :
    1 / a Stab K A
    theorem one_le_of_mem {α : Type u_1} [Field α] [Fintype α] [DecidableEq α] (A : Finset α) {K : } {a : α} (hA : A.Nonempty) (h : a Stab K A) :
    1 K
    theorem Stab_neg' {α : Type u_1} [Field α] [Fintype α] [DecidableEq α] (A : Finset α) {K : } {a : α} (h : a Stab K A) :
    -a Stab (K ^ 3) A
    theorem Stab_add' {α : Type u_1} [Field α] [Fintype α] [DecidableEq α] (A : Finset α) {K₁ : } {K₂ : } {a : α} {b : α} (h₁ : a Stab K₁ A) (h₂ : b Stab K₂ A) :
    a + b Stab (K₁ ^ 8 * K₂) A
    theorem Stab_mul' {α : Type u_1} [Field α] [Fintype α] [DecidableEq α] (A : Finset α) {K₁ : } {K₂ : } {a : α} {b : α} (h₁ : a Stab K₁ A) (h₂ : b Stab K₂ A) :
    a * b Stab (K₁ * K₂) A
    theorem Stab_le' {α : Type u_1} [Field α] [Fintype α] [DecidableEq α] (A : Finset α) {K : } {K₂ : } {a : α} (h₁ : a Stab K A) (h₂ : K K₂) :
    a Stab K₂ A
    theorem Stab_le {α : Type u_1} [Field α] [Fintype α] [DecidableEq α] (A : Finset α) {K : } {K₂ : } (h₂ : K K₂) :
    Stab K A Stab K₂ A
    theorem Stab_le₂ {α : Type u_1} [Field α] [Fintype α] [DecidableEq α] (A : Finset α) {K : } {K₂ : } (h₂ : 1 KK K₂) :
    Stab K A Stab K₂ A
    theorem Stab_add {α : Type u_1} [Field α] [Fintype α] [DecidableEq α] (A : Finset α) {K₁ : } {K₂ : } :
    Stab K₁ A + Stab K₂ A Stab (K₁ ^ 8 * K₂) A
    theorem Stab_neg {α : Type u_1} [Field α] [Fintype α] [DecidableEq α] (A : Finset α) {K : } :
    -Stab K A Stab (K ^ 3) A
    theorem Stab_sub {α : Type u_1} [Field α] [Fintype α] [DecidableEq α] (A : Finset α) {K₁ : } {K₂ : } :
    Stab K₁ A - Stab K₂ A Stab (K₁ ^ 8 * K₂ ^ 3) A
    theorem Stab_mul {α : Type u_1} [Field α] [Fintype α] [DecidableEq α] (A : Finset α) {K₁ : } {K₂ : } :
    Stab K₁ A * Stab K₂ A Stab (K₁ * K₂) A
    theorem Stab_nsmul {α : Type u_1} [Field α] [Fintype α] [DecidableEq α] (A : Finset α) {K : } (n : ) :
    (n + 1) Stab K A Stab (K ^ (8 * n + 1)) A
    theorem Stab_subset {α : Type u_1} [Field α] [Fintype α] [DecidableEq α] (A : Finset α) {K : } :
    3 Stab K A ^ 2 - 3 Stab K A ^ 2 Stab (K ^ 374) A
    theorem Stab_card_inc (K : ) (p : ) [inst : Fact (Nat.Prime p)] (A : Finset (ZMod p)) :
    (min ((Stab K A).card ^ 2) p) / 2 (Stab (K ^ 374) A).card
    theorem Stab_card_inc' (K : ) (p : ) [Fact (Nat.Prime p)] (A : Finset (ZMod p)) (h : 4 (Stab K A).card) :
    min ((Stab K A).card ^ (3 / 2)) (p / 2) (Stab (K ^ 374) A).card
    theorem Stab_card_inc_rep (K : ) (p : ) [inst : Fact (Nat.Prime p)] (A : Finset (ZMod p)) (h : 4 (Stab K A).card) (n : ) :
    min ((Stab K A).card ^ (3 / 2) ^ n) (p / 2) (Stab (K ^ 374 ^ n) A).card
    theorem Stab_full' (K : ) (p : ) [inst : Fact (Nat.Prime p)] (A : Finset (ZMod p)) (β : ) (βpos : 0 < β) (h : 4 (Stab K A).card) (h₂ : p ^ β (Stab K A).card) :
    p / 2 (Stab (K ^ full_C₂ β) A).card
    theorem Stab_full (K : ) (p : ) [inst : Fact (Nat.Prime p)] (A : Finset (ZMod p)) (β : ) (βpos : 0 < β) (h : 4 (Stab K A).card) (h₂ : p ^ β (Stab K A).card) :
    Stab (K ^ full_C β) A = Finset.univ
    theorem Stab_no_full {α : Type u_1} [Field α] [Fintype α] [DecidableEq α] (K : ) (β : ) (A : Finset α) (h : (Fintype.card α) ^ β A.card) (h₂ : A.card (Fintype.card α) ^ (1 - β)) (h₃ : K < (Fintype.card α) ^ β / 2) :
    Stab K A Finset.univ
    theorem Stab_small (K : ) (p : ) [inst : Fact (Nat.Prime p)] (A : Finset (ZMod p)) (β : ) (βpos : 0 < β) (h : 4 (Stab K A).card) (h₂ : p ^ β (Stab K A).card) (γ : ) (h₃ : p ^ γ A.card) (h₄ : A.card p ^ (1 - γ)) :
    p ^ γ / 2 K ^ full_C β