Documentation

Pseudorandom.Incidence.Constants

Equations
Instances For
    noncomputable def SG_C₄ :
    Equations
    Instances For
      noncomputable def SG_C₃ :
      Equations
      Instances For
        noncomputable def SG_C₂ :
        Equations
        Instances For
          noncomputable def SG_C :
          Equations
          Instances For
            noncomputable def ST_C₄ :
            Equations
            Instances For
              noncomputable def ST_C₃ :
              Equations
              Instances For
                noncomputable def ST_C₂ :
                Equations
                Instances For
                  noncomputable def ST_C :
                  Equations
                  Instances For
                    noncomputable def SG_eps₃ (α : ) :
                    Equations
                    Instances For
                      noncomputable def SG_eps₂ (α : ) :
                      Equations
                      Instances For
                        noncomputable def SG_eps (α : ) :
                        Equations
                        Instances For
                          noncomputable def ST_prime_field_eps₃ (α : ) :
                          Equations
                          Instances For
                            noncomputable def ST_prime_field_eps₂ (α : ) :
                            Equations
                            Instances For
                              noncomputable def ST_prime_field_eps (α : ) :
                              Equations
                              Instances For
                                theorem ntlSGeps (β : ) :
                                SG_eps₃ β < 45 / 1756
                                theorem ntlSGeps' (β : ) :
                                SG_eps₃ β 15 / 136 * β
                                theorem full_C_neq_zero (x : ) :
                                theorem pos_SGeps₃ (β : ) (h : 0 < β) :
                                theorem pos_ST_prime_field_eps (α : ) (h : 0 < α) :
                                theorem ST_C_pos :
                                theorem lemma1 (β : ) :
                                theorem lemma2 (β : ) :
                                theorem lemma4 (β : ) :
                                1 3 / 2 - SG_eps β
                                theorem lemma5 (β : ) :
                                1 + (2⁻¹ - SG_eps β) 0
                                theorem lemma6 (β : ) :
                                1 + 4 * ST_prime_field_eps β 3 / 2 - SG_eps β
                                theorem lemma7 (β : ) :
                                1 / 2 + SG_eps β 1 + (-(SG_eps β * 2) - ST_prime_field_eps β * 4)
                                theorem lemma8 (β : ) :
                                theorem lemma9 (β : ) (h : 0 < β) :
                                theorem lemma10 (β : ) (h : 0 < β) :
                                theorem lemma11 (β : ) (h : 0 < β) :
                                β / 4 < β / 2 - 439 / 45 * β * SG_eps₃ β
                                theorem lemma12 (β : ) (h : 0 < β) :
                                0 < β / 2 - 439 / 45 * β * SG_eps₃ β
                                theorem lemma13 (β : ) :
                                ST_prime_field_eps β * 6 + SG_eps₂ β + SG_eps β 1 / 2 - 439 / 45 * SG_eps₃ β
                                theorem lemma14 (β : ) :
                                0 1 / 2 - 439 / 45 * SG_eps₃ β
                                theorem lemma15 (β : ) (h : 0 < β) :
                                theorem lemma16 (β : ) :
                                0 1 / 2 - 113 / 30 * SG_eps₃ β
                                theorem final_theorem (β : ) (h : 0 < β) (n : ℕ+) (p : ) [instpprime : Fact (Nat.Prime p)] (h₁ : n p ^ (2 - β)) (h₂ : SG_C₅ * (1 / 4) n ^ (ST_prime_field_eps β * 6 + SG_eps₂ β + SG_eps β)) :
                                (2 ^ 110 * (256 * n ^ (8 * ST_prime_field_eps β + 2 * SG_eps₃ β)) ^ 42) ^ full_C (β / 2 - 439 / 45 * β * SG_eps₃ β) < p ^ min (β / 2 - 17 / 15 * (2 - β) * SG_eps₃ β) (β / 2 - 113 / 30 * β * SG_eps₃ β) / 2