Documentation
Pseudorandom
.
Incidence
.
Constants
Search
Google site search
return to top
source
Imports
Init
Pseudorandom.Additive.Constants
Mathlib.Analysis.SpecialFunctions.Pow.NNReal
Imported by
SG_C₅
SG_C₄
SG_C₃
SG_C₂
SG_C
ST_C₄
ST_C₃
ST_C₂
ST_C
SG_eps₃
SG_eps₂
SG_eps
ST_prime_field_eps₃
ST_prime_field_eps₂
ST_prime_field_eps
ntlSGeps
ntlSGeps'
full_C_neq_zero
pos_SGeps₃
pos_ST_prime_field_eps
one_le_SG_C₃
SG_C₃_pos
one_le_ST_C₃
ST_C₃_pos
ST_C_pos
lemma1
lemma2
lemma3
lemma4
lemma5
lemma6
lemma7
lemma8
lemma9
lemma10
lemma11
lemma12
lemma13
lemma14
lemma15
lemma16
final_theorem
source
def
SG_C₅
:
NNReal
Equations
SG_C₅
=
2
^
49
Instances For
source
noncomputable def
SG_C₄
:
NNReal
Equations
SG_C₄
=
4
+
16
*
(
SG_C₅
+
2
)
Instances For
source
noncomputable def
SG_C₃
:
NNReal
Equations
SG_C₃
=
4
*
NNReal.sqrt
(
SG_C₄
+
1
)
Instances For
source
noncomputable def
SG_C₂
:
NNReal
Equations
SG_C₂
=
SG_C₃
+
16
Instances For
source
noncomputable def
SG_C
:
NNReal
Equations
SG_C
=
SG_C₂
+
1
Instances For
source
noncomputable def
ST_C₄
:
NNReal
Equations
ST_C₄
=
SG_C
+
2
Instances For
source
noncomputable def
ST_C₃
:
NNReal
Equations
ST_C₃
=
(
ST_C₄
+
73
)
^
(
1
/
4
)
Instances For
source
noncomputable def
ST_C₂
:
NNReal
Equations
ST_C₂
=
NNReal.sqrt
(
2
*
(
ST_C₃
+
NNReal.sqrt
2
/
4
)
)
Instances For
source
noncomputable def
ST_C
:
NNReal
Equations
ST_C
=
ST_C₂
+
1
Instances For
source
noncomputable def
SG_eps₃
(α :
ℝ
)
:
ℝ
Equations
SG_eps₃
α
=
min
(
min
(
11
/
439
)
(
15
/
136
*
α
)
)
(
α
/
4
/
(
↑
(
full_C
(
α
/
4
)
)
*
9212
/
45
)
)
Instances For
source
noncomputable def
SG_eps₂
(α :
ℝ
)
:
ℝ
Equations
SG_eps₂
α
=
2
/
3
*
SG_eps₃
α
Instances For
source
noncomputable def
SG_eps
(α :
ℝ
)
:
ℝ
Equations
SG_eps
α
=
13
/
30
*
SG_eps₂
α
Instances For
source
noncomputable def
ST_prime_field_eps₃
(α :
ℝ
)
:
ℝ
Equations
ST_prime_field_eps₃
α
=
12
/
13
*
SG_eps
α
Instances For
source
noncomputable def
ST_prime_field_eps₂
(α :
ℝ
)
:
ℝ
Equations
ST_prime_field_eps₂
α
=
ST_prime_field_eps₃
α
/
4
Instances For
source
noncomputable def
ST_prime_field_eps
(α :
ℝ
)
:
ℝ
Equations
ST_prime_field_eps
α
=
ST_prime_field_eps₂
α
/
3
Instances For
source
theorem
ntlSGeps
(β :
ℝ
)
:
SG_eps₃
β
<
45
/
1756
source
theorem
ntlSGeps'
(β :
ℝ
)
:
SG_eps₃
β
≤
15
/
136
*
β
source
theorem
full_C_neq_zero
(x :
ℝ
)
:
full_C
x
≠
0
source
theorem
pos_SGeps₃
(β :
ℝ
)
(h :
0
<
β
)
:
0
<
SG_eps₃
β
source
theorem
pos_ST_prime_field_eps
(α :
ℝ
)
(h :
0
<
α
)
:
0
<
ST_prime_field_eps
α
source
theorem
one_le_SG_C₃
:
1
≤
SG_C₃
source
theorem
SG_C₃_pos
:
0
<
SG_C₃
source
theorem
one_le_ST_C₃
:
1
≤
ST_C₃
source
theorem
ST_C₃_pos
:
0
<
ST_C₃
source
theorem
ST_C_pos
:
0
<
ST_C
source
theorem
lemma1
(β :
ℝ
)
:
1
/
2
+
2
*
ST_prime_field_eps
β
≤
1
-
4
*
ST_prime_field_eps₂
β
source
theorem
lemma2
(β :
ℝ
)
:
4
*
ST_prime_field_eps₂
β
≤
1
source
theorem
lemma3
(β :
ℝ
)
:
ST_prime_field_eps₂
β
+
6
*
ST_prime_field_eps
β
≤
1
-
4
*
ST_prime_field_eps₂
β
source
theorem
lemma4
(β :
ℝ
)
:
1
≤
3
/
2
-
SG_eps
β
source
theorem
lemma5
(β :
ℝ
)
:
1
+
(
2
⁻¹
-
SG_eps
β
)
≠
0
source
theorem
lemma6
(β :
ℝ
)
:
1
+
4
*
ST_prime_field_eps
β
≤
3
/
2
-
SG_eps
β
source
theorem
lemma7
(β :
ℝ
)
:
1
/
2
+
SG_eps
β
≤
1
+
(
-
(
SG_eps
β
*
2
)
-
ST_prime_field_eps
β
*
4
)
source
theorem
lemma8
(β :
ℝ
)
:
0
≤
1
/
2
-
SG_eps₂
β
-
SG_eps
β
-
4
*
ST_prime_field_eps
β
source
theorem
lemma9
(β :
ℝ
)
(h :
0
<
β
)
:
0
≤
ST_prime_field_eps
β
source
theorem
lemma10
(β :
ℝ
)
(h :
0
<
β
)
:
0
≤
SG_eps₃
β
source
theorem
lemma11
(β :
ℝ
)
(h :
0
<
β
)
:
β
/
4
<
β
/
2
-
439
/
45
*
β
*
SG_eps₃
β
source
theorem
lemma12
(β :
ℝ
)
(h :
0
<
β
)
:
0
<
β
/
2
-
439
/
45
*
β
*
SG_eps₃
β
source
theorem
lemma13
(β :
ℝ
)
:
ST_prime_field_eps
β
*
6
+
SG_eps₂
β
+
SG_eps
β
≤
1
/
2
-
439
/
45
*
SG_eps₃
β
source
theorem
lemma14
(β :
ℝ
)
:
0
≤
1
/
2
-
439
/
45
*
SG_eps₃
β
source
theorem
lemma15
(β :
ℝ
)
(h :
0
<
β
)
:
0
≤
1
/
2
+
8
*
ST_prime_field_eps
β
+
SG_eps₂
β
+
SG_eps
β
source
theorem
lemma16
(β :
ℝ
)
:
0
≤
1
/
2
-
113
/
30
*
SG_eps₃
β
source
theorem
final_theorem
(β :
ℝ
)
(h :
0
<
β
)
(n :
ℕ+
)
(p :
ℕ
)
[instpprime :
Fact
(
Nat.Prime
p
)
]
(h₁ :
↑
↑
n
≤
↑
p
^
(
2
-
β
)
)
(h₂ :
SG_C₅
*
(
1
/
4
)
≤
↑
↑
n
^
(
ST_prime_field_eps
β
*
6
+
SG_eps₂
β
+
SG_eps
β
)
)
:
(
2
^
110
*
(
256
*
↑
↑
n
^
(
8
*
ST_prime_field_eps
β
+
2
*
SG_eps₃
β
)
)
^
42
)
^
full_C
(
β
/
2
-
439
/
45
*
β
*
SG_eps₃
β
)
<
↑
p
^
min
(
β
/
2
-
17
/
15
*
(
2
-
β
)
*
SG_eps₃
β
)
(
β
/
2
-
113
/
30
*
β
*
SG_eps₃
β
)
/
2