Documentation

LeanAPAP.Mathlib.Combinatorics.Additive.Energy

Pretty printer defined by notation3 command.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        Pretty printer defined by notation3 command.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          Pretty printer defined by notation3 command.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                Pretty printer defined by notation3 command.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  abbrev Finset.additiveEnergy_eq_card_filter.match_3 {α : Type u_1} [DecidableEq α] [Add α] (s : Finset α) (t : Finset α) (motive : (x : (α × α) × α × α) → x Finset.filter (fun (x : (α × α) × α × α) => Finset.additiveEnergy_eq_card_filter.match_1 (fun (x : (α × α) × α × α) => Prop) x fun (a b c d : α) => a + b = c + d) ((s ×ˢ t) ×ˢ s ×ˢ t)Prop) :
                  ∀ (x : (α × α) × α × α) (h : x Finset.filter (fun (x : (α × α) × α × α) => Finset.additiveEnergy_eq_card_filter.match_1 (fun (x : (α × α) × α × α) => Prop) x fun (a b c d : α) => a + b = c + d) ((s ×ˢ t) ×ˢ s ×ˢ t)), (∀ (a b c d : α) (h : ((a, b), c, d) Finset.filter (fun (x : (α × α) × α × α) => Finset.additiveEnergy_eq_card_filter.match_1 (fun (x : (α × α) × α × α) => Prop) x fun (a b c d : α) => a + b = c + d) ((s ×ˢ t) ×ˢ s ×ˢ t)), motive ((a, b), c, d) h)motive x h
                  Equations
                  • =
                  Instances For
                    theorem Finset.additiveEnergy_eq_card_filter {α : Type u_1} [DecidableEq α] [Add α] (s : Finset α) (t : Finset α) :
                    E[s, t] = (Finset.filter (fun (x : (α × α) × α × α) => Finset.additiveEnergy_eq_card_filter.match_1 (fun (x : (α × α) × α × α) => Prop) x fun (a b c d : α) => a + b = c + d) ((s ×ˢ t) ×ˢ s ×ˢ t)).card
                    abbrev Finset.additiveEnergy_eq_card_filter.match_1 {α : Type u_1} (motive : (α × α) × α × αSort u_2) :
                    (x : (α × α) × α × α) → ((a b c d : α) → motive ((a, b), c, d))motive x
                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      abbrev Finset.additiveEnergy_eq_card_filter.match_2 {α : Type u_1} [DecidableEq α] [Add α] (s : Finset α) (t : Finset α) (motive : (x : (α × α) × α × α) → x Finset.filter (fun (x : (α × α) × α × α) => x.1.1 + x.2.1 = x.1.2 + x.2.2) ((s ×ˢ s) ×ˢ t ×ˢ t)Sort u_2) :
                      (x : (α × α) × α × α) → (x_1 : x Finset.filter (fun (x : (α × α) × α × α) => x.1.1 + x.2.1 = x.1.2 + x.2.2) ((s ×ˢ s) ×ˢ t ×ˢ t)) → ((a b c d : α) → (x : ((a, b), c, d) Finset.filter (fun (x : (α × α) × α × α) => x.1.1 + x.2.1 = x.1.2 + x.2.2) ((s ×ˢ s) ×ˢ t ×ˢ t)) → motive ((a, b), c, d) x)motive x x_1
                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        theorem Finset.multiplicativeEnergy_eq_card_filter {α : Type u_1} [DecidableEq α] [Mul α] (s : Finset α) (t : Finset α) :
                        Eₘ[s, t] = (Finset.filter (fun (x : (α × α) × α × α) => match x with | ((a, b), c, d) => a * b = c * d) ((s ×ˢ t) ×ˢ s ×ˢ t)).card
                        abbrev Finset.additiveEnergy_eq_sum_sq'.match_1 {α : Type u_1} (motive : α × αSort u_2) :
                        (x : α × α) → ((x y : α) → motive (x, y))motive x
                        Equations
                        Instances For
                          theorem Finset.additiveEnergy_eq_sum_sq' {α : Type u_1} [DecidableEq α] [Add α] (s : Finset α) (t : Finset α) :
                          E[s, t] = Finset.sum (s + t) fun (a : α) => (Finset.filter (fun (x : α × α) => Finset.additiveEnergy_eq_sum_sq'.match_1 (fun (x : α × α) => Prop) x fun (x y : α) => x + y = a) (s ×ˢ t)).card ^ 2
                          theorem Finset.multiplicativeEnergy_eq_sum_sq' {α : Type u_1} [DecidableEq α] [Mul α] (s : Finset α) (t : Finset α) :
                          Eₘ[s, t] = Finset.sum (s * t) fun (a : α) => (Finset.filter (fun (x : α × α) => match x with | (x, y) => x * y = a) (s ×ˢ t)).card ^ 2
                          theorem Finset.additiveEnergy_eq_sum_sq {α : Type u_1} [DecidableEq α] [Add α] [Fintype α] (s : Finset α) (t : Finset α) :
                          E[s, t] = Finset.sum Finset.univ fun (a : α) => (Finset.filter (fun (x : α × α) => Finset.additiveEnergy_eq_sum_sq'.match_1 (fun (x : α × α) => Prop) x fun (x y : α) => x + y = a) (s ×ˢ t)).card ^ 2
                          theorem Finset.multiplicativeEnergy_eq_sum_sq {α : Type u_1} [DecidableEq α] [Mul α] [Fintype α] (s : Finset α) (t : Finset α) :
                          Eₘ[s, t] = Finset.sum Finset.univ fun (a : α) => (Finset.filter (fun (x : α × α) => match x with | (x, y) => x * y = a) (s ×ˢ t)).card ^ 2
                          theorem Finset.card_sq_le_card_mul_additiveEnergy {α : Type u_1} [DecidableEq α] [Add α] (s : Finset α) (t : Finset α) (u : Finset α) :
                          (Finset.filter (fun (x : α × α) => Finset.additiveEnergy_eq_sum_sq'.match_1 (fun (x : α × α) => Prop) x fun (a b : α) => a + b u) (s ×ˢ t)).card ^ 2 u.card * E[s, t]
                          theorem Finset.card_sq_le_card_mul_multiplicativeEnergy {α : Type u_1} [DecidableEq α] [Mul α] (s : Finset α) (t : Finset α) (u : Finset α) :
                          (Finset.filter (fun (x : α × α) => match x with | (a, b) => a * b u) (s ×ˢ t)).card ^ 2 u.card * Eₘ[s, t]
                          theorem Finset.le_card_add_mul_additiveEnergy {α : Type u_1} [DecidableEq α] [Add α] (s : Finset α) (t : Finset α) :
                          s.card ^ 2 * t.card ^ 2 (s + t).card * E[s, t]
                          theorem Finset.le_card_add_mul_multiplicativeEnergy {α : Type u_1} [DecidableEq α] [Mul α] (s : Finset α) (t : Finset α) :
                          s.card ^ 2 * t.card ^ 2 (s * t).card * Eₘ[s, t]