TODO #
Rename
map_add_mul
→map_add_eq_mul
map_zero_one
→map_zero_eq_one
map_nsmul_pow
→map_nsmul_eq_pow
@[simp]
theorem
AddChar.coe_ne_zero
{G : Type u_1}
{R : Type u_3}
[AddGroup G]
[NormedField R]
(ψ : AddChar G R)
:
⇑ψ ≠ 0
theorem
AddChar.map_neg_eq_conj
{G : Type u_1}
{R : Type u_3}
[AddCommGroup G]
[RCLike R]
[Finite G]
(ψ : AddChar G R)
(x : G)
:
ψ (-x) = (starRingEnd R) (ψ x)
theorem
AddChar.l2Inner_eq
{G : Type u_1}
{R : Type u_3}
[AddCommGroup G]
[RCLike R]
[Fintype G]
(ψ₁ : AddChar G R)
(ψ₂ : AddChar G R)
:
l2Inner ⇑ψ₁ ⇑ψ₂ = if ψ₁ = ψ₂ then ↑(Fintype.card G) else 0
theorem
AddChar.l2Inner_eq_card_iff_eq
{G : Type u_1}
{R : Type u_3}
[AddCommGroup G]
[RCLike R]
{ψ₁ : AddChar G R}
{ψ₂ : AddChar G R}
[Fintype G]
:
l2Inner ⇑ψ₁ ⇑ψ₂ = ↑(Fintype.card G) ↔ ψ₁ = ψ₂
theorem
AddChar.linearIndependent
(G : Type u_1)
(R : Type u_3)
[AddCommGroup G]
[RCLike R]
[Finite G]
:
LinearIndependent R DFunLike.coe
noncomputable instance
AddChar.instFintype
(G : Type u_1)
(R : Type u_3)
[AddCommGroup G]
[RCLike R]
[Finite G]
:
Equations
- AddChar.instFintype G R = Fintype.ofFinite (AddChar G R)
@[simp]
theorem
AddChar.card_addChar_le
(G : Type u_1)
(R : Type u_3)
[AddCommGroup G]
[RCLike R]
[Fintype G]
:
Fintype.card (AddChar G R) ≤ Fintype.card G
def
AddChar.directSum
{R : Type u_3}
{ι : Type u_4}
{π : ι → Type u_5}
[DecidableEq ι]
[(i : ι) → AddCommGroup (π i)]
[CommMonoid R]
(ψ : (i : ι) → AddChar (π i) R)
:
Direct sum of additive characters.
Equations
- AddChar.directSum ψ = AddChar.toAddMonoidHomEquiv'.symm (DirectSum.toAddMonoid fun (i : ι) => AddChar.toAddMonoidHomEquiv' (ψ i))
Instances For
theorem
AddChar.directSum_injective
{R : Type u_3}
{ι : Type u_4}
{π : ι → Type u_5}
[DecidableEq ι]
[(i : ι) → AddCommGroup (π i)]
[CommMonoid R]
:
Function.Injective AddChar.directSum