Documentation

LeanAPAP.Prereqs.AddChar.Basic

TODO #

Rename

@[simp]
theorem AddChar.norm_apply {G : Type u_1} {R : Type u_3} [AddGroup G] [Finite G] [NormedField R] (ψ : AddChar G R) (x : G) :
ψ x = 1
@[simp]
theorem AddChar.coe_ne_zero {G : Type u_1} {R : Type u_3} [AddGroup G] [NormedField R] (ψ : AddChar G R) :
ψ 0
theorem AddChar.inv_apply_eq_conj {G : Type u_1} {R : Type u_3} [AddGroup G] [RCLike R] [Finite G] (ψ : AddChar G R) (x : G) :
(ψ x)⁻¹ = (starRingEnd R) (ψ x)
theorem AddChar.l2Inner_self {G : Type u_1} {R : Type u_3} [AddGroup G] [RCLike R] [Fintype G] (ψ : AddChar G R) :
l2Inner ψ ψ = (Fintype.card G)
theorem AddChar.expect_eq_ite {G : Type u_1} {R : Type u_3} [AddGroup G] [Fintype G] [Semifield R] [IsDomain R] [CharZero R] (ψ : AddChar G R) :
(Finset.expect Finset.univ fun (a : G) => ψ a) = if ψ = 0 then 1 else 0
theorem AddChar.expect_eq_zero_iff_ne_zero {G : Type u_1} {R : Type u_3} [AddGroup G] [Fintype G] [Semifield R] [IsDomain R] [CharZero R] {ψ : AddChar G R} :
(Finset.expect Finset.univ fun (x : G) => ψ x) = 0 ψ 0
theorem AddChar.expect_ne_zero_iff_eq_zero {G : Type u_1} {R : Type u_3} [AddGroup G] [Fintype G] [Semifield R] [IsDomain R] [CharZero R] {ψ : AddChar G R} :
(Finset.expect Finset.univ fun (x : G) => ψ x) 0 ψ = 0
theorem AddChar.map_neg_eq_conj {G : Type u_1} {R : Type u_3} [AddCommGroup G] [RCLike R] [Finite G] (ψ : AddChar G R) (x : G) :
ψ (-x) = (starRingEnd R) (ψ x)
theorem AddChar.l2Inner_eq {G : Type u_1} {R : Type u_3} [AddCommGroup G] [RCLike R] [Fintype G] (ψ₁ : AddChar G R) (ψ₂ : AddChar G R) :
l2Inner ψ₁ ψ₂ = if ψ₁ = ψ₂ then (Fintype.card G) else 0
theorem AddChar.l2Inner_eq_zero_iff_ne {G : Type u_1} {R : Type u_3} [AddCommGroup G] [RCLike R] {ψ₁ : AddChar G R} {ψ₂ : AddChar G R} [Fintype G] :
l2Inner ψ₁ ψ₂ = 0 ψ₁ ψ₂
theorem AddChar.l2Inner_eq_card_iff_eq {G : Type u_1} {R : Type u_3} [AddCommGroup G] [RCLike R] {ψ₁ : AddChar G R} {ψ₂ : AddChar G R} [Fintype G] :
l2Inner ψ₁ ψ₂ = (Fintype.card G) ψ₁ = ψ₂
theorem AddChar.linearIndependent (G : Type u_1) (R : Type u_3) [AddCommGroup G] [RCLike R] [Finite G] :
LinearIndependent R DFunLike.coe
noncomputable instance AddChar.instFintype (G : Type u_1) (R : Type u_3) [AddCommGroup G] [RCLike R] [Finite G] :
Equations
@[simp]
def AddChar.directSum {R : Type u_3} {ι : Type u_4} {π : ιType u_5} [DecidableEq ι] [(i : ι) → AddCommGroup (π i)] [CommMonoid R] (ψ : (i : ι) → AddChar (π i) R) :
AddChar (DirectSum ι fun (i : ι) => π i) R

Direct sum of additive characters.

Equations
Instances For
    theorem AddChar.directSum_injective {R : Type u_3} {ι : Type u_4} {π : ιType u_5} [DecidableEq ι] [(i : ι) → AddCommGroup (π i)] [CommMonoid R] :
    Function.Injective AddChar.directSum