Documentation

LeanAPAP.Prereqs.Discrete.LpNorm.Basic

Lp norms #

Lp norm #

noncomputable def lpNorm {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] (p : ENNReal) (f : (i : ι) → α i) :

The Lp norm of a function.

Equations
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem lpNorm_eq_sum' {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} (hp : p.toReal 0) (f : (i : ι) → α i) :
      f‖_[p] = (Finset.sum Finset.univ fun (i : ι) => f i ^ p.toReal) ^ p.toReal⁻¹
      theorem lpNorm_eq_sum'' {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : } (hp : 0 < p) (f : (i : ι) → α i) :
      f‖_[(Real.toNNReal p)] = (Finset.sum Finset.univ fun (i : ι) => f i ^ p) ^ p⁻¹
      theorem lpNorm_eq_sum {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : NNReal} (hp : p 0) (f : (i : ι) → α i) :
      f‖_[p] = (Finset.sum Finset.univ fun (i : ι) => f i ^ p) ^ (p)⁻¹
      theorem lpNorm_rpow_eq_sum {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : NNReal} (hp : p 0) (f : (i : ι) → α i) :
      f‖_[p] ^ p = Finset.sum Finset.univ fun (i : ι) => f i ^ p
      theorem lpNorm_pow_eq_sum {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : } (hp : p 0) (f : (i : ι) → α i) :
      f‖_[p] ^ p = Finset.sum Finset.univ fun (i : ι) => f i ^ p
      theorem l2Norm_sq_eq_sum {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] (f : (i : ι) → α i) :
      f‖_[2] ^ 2 = Finset.sum Finset.univ fun (i : ι) => f i ^ 2
      theorem l2Norm_eq_sum {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] (f : (i : ι) → α i) :
      f‖_[2] = (Finset.sum Finset.univ fun (i : ι) => f i ^ 2)
      theorem l1Norm_eq_sum {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] (f : (i : ι) → α i) :
      f‖_[1] = Finset.sum Finset.univ fun (i : ι) => f i
      theorem l0Norm_eq_card {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] (f : (i : ι) → α i) :
      theorem linftyNorm_eq_ciSup {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] (f : (i : ι) → α i) :
      f‖_[] = ⨆ (i : ι), f i
      @[simp]
      theorem lpNorm_zero {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} :
      @[simp]
      theorem lpNorm_of_isEmpty {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] [IsEmpty ι] (p : ENNReal) (f : (i : ι) → α i) :
      @[simp]
      theorem lpNorm_norm {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] (p : ENNReal) (f : (i : ι) → α i) :
      fun (i : ι) => f i‖_[p] = f‖_[p]
      @[simp]
      theorem lpNorm_neg {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} (f : (i : ι) → α i) :
      theorem lpNorm_sub_comm {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} (f : (i : ι) → α i) (g : (i : ι) → α i) :
      @[simp]
      theorem lpNorm_nonneg {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} {f : (i : ι) → α i} :
      @[simp]
      theorem lpNorm_eq_zero {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} {f : (i : ι) → α i} :
      f‖_[p] = 0 f = 0
      @[simp]
      theorem lpNorm_pos {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} {f : (i : ι) → α i} :
      0 < f‖_[p] f 0
      theorem lpNorm_mono_right {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} {q : ENNReal} (hpq : p q) (f : (i : ι) → α i) :
      theorem lpNorm_add_le {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} (hp : 1 p) (f : (i : ι) → α i) (g : (i : ι) → α i) :
      theorem lpNorm_sum_le {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} (hp : 1 p) {κ : Type u_4} (s : Finset κ) (f : κ(i : ι) → α i) :
      Finset.sum s fun (i : κ) => f i‖_[p] Finset.sum s fun (i : κ) => f i‖_[p]
      theorem lpNorm_sub_le {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} (hp : 1 p) (f : (i : ι) → α i) (g : (i : ι) → α i) :
      theorem lpNorm_le_lpNorm_add_lpNorm_sub' {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} (hp : 1 p) (f : (i : ι) → α i) (g : (i : ι) → α i) :
      theorem lpNorm_le_lpNorm_add_lpNorm_sub {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} (hp : 1 p) (f : (i : ι) → α i) (g : (i : ι) → α i) :
      theorem lpNorm_le_add_lpNorm_add {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} (hp : 1 p) (f : (i : ι) → α i) (g : (i : ι) → α i) :
      theorem lpNorm_sub_le_lpNorm_sub_add_lpNorm_sub {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} {h : (i : ι) → α i} (hp : 1 p) (f : (i : ι) → α i) (g : (i : ι) → α i) :
      theorem lpNorm_smul {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} [NormedField 𝕜] [(i : ι) → NormedSpace 𝕜 (α i)] (hp : 1 p) (c : 𝕜) (f : (i : ι) → α i) :
      theorem lpNorm_nsmul {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} [(i : ι) → NormedSpace (α i)] (hp : 1 p) (n : ) (f : (i : ι) → α i) :
      theorem lpNorm_expect_le {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} [(i : ι) → NormedSpace (α i)] [(i : ι) → Module ℚ≥0 (α i)] (hp : 1 p) {κ : Type u_4} (s : Finset κ) (f : κ(i : ι) → α i) :
      Finset.expect s fun (i : κ) => f i‖_[p] Finset.expect s fun (i : κ) => f i‖_[p]
      @[simp]
      theorem lpNorm_const {ι : Type u_1} [Fintype ι] {α : Type u_3} [NormedAddCommGroup α] {p : NNReal} (hp : p 0) (a : α) :
      @[simp]
      theorem lpNorm_one {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [RCLike 𝕜] {p : NNReal} (hp : p 0) :
      1‖_[p] = (Fintype.card ι) ^ (p)⁻¹
      theorem lpNorm_natCast_mul {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [RCLike 𝕜] {p : ENNReal} (hp : 1 p) (n : ) (f : ι𝕜) :
      n * f‖_[p] = n * f‖_[p]
      theorem lpNorm_natCast_mul' {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [RCLike 𝕜] {p : ENNReal} (hp : 1 p) (n : ) (f : ι𝕜) :
      fun (x : ι) => n * f x‖_[p] = n * f‖_[p]
      theorem lpNorm_mul_natCast {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [RCLike 𝕜] {p : ENNReal} (hp : 1 p) (f : ι𝕜) (n : ) :
      f * n‖_[p] = f‖_[p] * n
      theorem lpNorm_mul_natCast' {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [RCLike 𝕜] {p : ENNReal} (hp : 1 p) (f : ι𝕜) (n : ) :
      fun (x : ι) => f x * n‖_[p] = f‖_[p] * n
      theorem lpNorm_div_natCast {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [RCLike 𝕜] {p : ENNReal} (hp : 1 p) (f : ι𝕜) (n : ) :
      f / n‖_[p] = f‖_[p] / n
      theorem lpNorm_div_natCast' {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [RCLike 𝕜] {p : ENNReal} (hp : 1 p) (f : ι𝕜) (n : ) :
      fun (x : ι) => f x / n‖_[p] = f‖_[p] / n
      theorem lpNorm_mono {ι : Type u_1} [Fintype ι] {p : NNReal} {f : ι} {g : ι} (hf : 0 f) (hfg : f g) :

      Inner product #

      def l2Inner {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [CommSemiring 𝕜] [StarRing 𝕜] (f : ι𝕜) (g : ι𝕜) :
      𝕜

      Inner product giving rise to the L2 norm.

      Equations
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem l2Inner_eq_sum {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [CommSemiring 𝕜] [StarRing 𝕜] (f : ι𝕜) (g : ι𝕜) :
          l2Inner f g = Finset.sum Finset.univ fun (i : ι) => (starRingEnd 𝕜) (f i) * g i
          @[simp]
          theorem conj_l2Inner {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [CommSemiring 𝕜] [StarRing 𝕜] (f : ι𝕜) (g : ι𝕜) :
          (starRingEnd 𝕜) (l2Inner f g) = l2Inner g f
          @[simp]
          theorem l2Inner_zero_left {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [CommSemiring 𝕜] [StarRing 𝕜] (g : ι𝕜) :
          l2Inner 0 g = 0
          @[simp]
          theorem l2Inner_zero_right {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [CommSemiring 𝕜] [StarRing 𝕜] (f : ι𝕜) :
          l2Inner f 0 = 0
          @[simp]
          theorem l2Inner_of_isEmpty {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [CommSemiring 𝕜] [StarRing 𝕜] [IsEmpty ι] (f : ι𝕜) (g : ι𝕜) :
          l2Inner f g = 0
          @[simp]
          theorem l2Inner_const_left {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [CommSemiring 𝕜] [StarRing 𝕜] (a : 𝕜) (f : ι𝕜) :
          l2Inner (Function.const ι a) f = (starRingEnd 𝕜) a * Finset.sum Finset.univ fun (x : ι) => f x
          @[simp]
          theorem l2Inner_const_right {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [CommSemiring 𝕜] [StarRing 𝕜] (f : ι𝕜) (a : 𝕜) :
          l2Inner f (Function.const ι a) = (Finset.sum Finset.univ fun (x : ι) => (starRingEnd 𝕜) (f x)) * a
          theorem l2Inner_add_left {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [CommSemiring 𝕜] [StarRing 𝕜] (f₁ : ι𝕜) (f₂ : ι𝕜) (g : ι𝕜) :
          l2Inner (f₁ + f₂) g = l2Inner f₁ g + l2Inner f₂ g
          theorem l2Inner_add_right {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [CommSemiring 𝕜] [StarRing 𝕜] (f : ι𝕜) (g₁ : ι𝕜) (g₂ : ι𝕜) :
          l2Inner f (g₁ + g₂) = l2Inner f g₁ + l2Inner f g₂
          theorem l2Inner_smul_left {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [CommSemiring 𝕜] [StarRing 𝕜] {γ : Type u_3} [DistribSMul γ 𝕜] [Star γ] [StarModule γ 𝕜] [IsScalarTower γ 𝕜 𝕜] (c : γ) (f : ι𝕜) (g : ι𝕜) :
          l2Inner (c f) g = star c l2Inner f g
          theorem l2Inner_smul_right {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [CommSemiring 𝕜] [StarRing 𝕜] {γ : Type u_3} [DistribSMul γ 𝕜] [Star γ] [StarModule γ 𝕜] [SMulCommClass γ 𝕜 𝕜] (c : γ) (f : ι𝕜) (g : ι𝕜) :
          l2Inner f (c g) = c l2Inner f g
          theorem smul_l2Inner_left {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [CommSemiring 𝕜] [StarRing 𝕜] {γ : Type u_3} [DistribSMul γ 𝕜] [InvolutiveStar γ] [StarModule γ 𝕜] [IsScalarTower γ 𝕜 𝕜] (c : γ) (f : ι𝕜) (g : ι𝕜) :
          c l2Inner f g = l2Inner (star c f) g
          @[simp]
          theorem l2Inner_neg_left {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [CommRing 𝕜] [StarRing 𝕜] (f : ι𝕜) (g : ι𝕜) :
          l2Inner (-f) g = -l2Inner f g
          @[simp]
          theorem l2Inner_neg_right {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [CommRing 𝕜] [StarRing 𝕜] (f : ι𝕜) (g : ι𝕜) :
          l2Inner f (-g) = -l2Inner f g
          theorem l2Inner_sub_left {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [CommRing 𝕜] [StarRing 𝕜] (f₁ : ι𝕜) (f₂ : ι𝕜) (g : ι𝕜) :
          l2Inner (f₁ - f₂) g = l2Inner f₁ g - l2Inner f₂ g
          theorem l2Inner_sub_right {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [CommRing 𝕜] [StarRing 𝕜] (f : ι𝕜) (g₁ : ι𝕜) (g₂ : ι𝕜) :
          l2Inner f (g₁ - g₂) = l2Inner f g₁ - l2Inner f g₂
          theorem l2Inner_nonneg {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [OrderedCommSemiring 𝕜] [StarRing 𝕜] [StarOrderedRing 𝕜] {f : ι𝕜} {g : ι𝕜} (hf : 0 f) (hg : 0 g) :
          0 l2Inner f g
          theorem abs_l2Inner_le_l2Inner_abs {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [LinearOrderedCommRing 𝕜] [StarRing 𝕜] [TrivialStar 𝕜] {f : ι𝕜} {g : ι𝕜} :
          |l2Inner f g| l2Inner |f| |g|
          theorem l2Inner_eq_inner {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [RCLike 𝕜] (f : ι𝕜) (g : ι𝕜) :
          l2Inner f g = (WithLp.equiv 2 (ι𝕜)).symm f, (WithLp.equiv 2 (ι𝕜)).symm g⟫_𝕜
          theorem inner_eq_l2Inner {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [RCLike 𝕜] (f : PiLp 2 fun (_i : ι) => 𝕜) (g : PiLp 2 fun (_i : ι) => 𝕜) :
          f, g⟫_𝕜 = l2Inner ((WithLp.equiv 2 (ι𝕜)) f) ((WithLp.equiv 2 (ι𝕜)) g)
          @[simp]
          theorem l2Inner_self {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [RCLike 𝕜] (f : ι𝕜) :
          l2Inner f f = f‖_[2] ^ 2
          theorem l2Inner_self_of_norm_eq_one {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [RCLike 𝕜] {f : ι𝕜} (hf : ∀ (x : ι), f x = 1) :
          l2Inner f f = (Fintype.card ι)
          theorem linearIndependent_of_ne_zero_of_l2Inner_eq_zero {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] {κ : Type u_3} [RCLike 𝕜] {v : κι𝕜} (hz : ∀ (k : κ), v k 0) (ho : Pairwise fun (k l : κ) => l2Inner (v k) (v l) = 0) :
          @[simp]
          theorem lpNorm_translate {α : Type u_3} {β : Type u_4} [AddCommGroup α] [Fintype α] {p : ENNReal} [NormedAddCommGroup β] (a : α) (f : αβ) :
          @[simp]
          theorem lpNorm_conj {α : Type u_3} {β : Type u_4} [Fintype α] {p : ENNReal} [RCLike β] (f : αβ) :
          (starRingEnd (αβ)) f‖_[p] = f‖_[p]
          @[simp]
          theorem lpNorm_conjneg {α : Type u_3} {β : Type u_4} [AddCommGroup α] [Fintype α] {p : ENNReal} [RCLike β] (f : αβ) :
          theorem lpNorm_translate_sum_sub_le {α : Type u_3} {β : Type u_4} [AddCommGroup α] [Fintype α] {p : ENNReal} [NormedAddCommGroup β] (hp : 1 p) {ι : Type u_5} (s : Finset ι) (a : ια) (f : αβ) :
          τ (Finset.sum s fun (i : ι) => a i) f - f‖_[p] Finset.sum s fun (i : ι) => τ (a i) f - f‖_[p]
          theorem l1Norm_mul {α : Type u_3} {β : Type u_4} [Fintype α] [RCLike β] (f : αβ) (g : αβ) :
          f * g‖_[1] = l2Inner (fun (i : α) => f i) fun (i : α) => g i
          theorem l2Inner_le_l2Norm_mul_l2Norm {ι : Type u_1} [Fintype ι] (f : ι) (g : ι) :

          Cauchy-Schwarz inequality

          The positivity extension which identifies expressions of the form ‖f‖_[p].

          Instances For

            The positivity extension which identifies expressions of the form ⟪f, g⟫_[𝕜].

            Instances For

              Hölder inequality #

              @[simp]
              theorem lpNorm_abs {α : Type u_3} [Fintype α] (p : ENNReal) (f : α) :
              theorem l1Norm_mul_of_nonneg {α : Type u_3} [Fintype α] {f : α} {g : α} (hf : 0 f) (hg : 0 g) :
              theorem lpNorm_rpow {α : Type u_3} [Fintype α] {p : NNReal} {q : NNReal} {f : α} (hp : p 0) (hq : q 0) (hf : 0 f) :
              f ^ q‖_[p] = f‖_[p * q] ^ q
              theorem lpNorm_pow {α : Type u_3} [Fintype α] {p : NNReal} (hp : p 0) {q : } (hq : q 0) (f : α) :
              f ^ q‖_[p] = f‖_[p * q] ^ q
              theorem l1Norm_rpow {α : Type u_3} [Fintype α] {q : NNReal} {f : α} (hq : q 0) (hf : 0 f) :
              f ^ q‖_[1] = f‖_[q] ^ q
              theorem l1Norm_pow {α : Type u_3} [Fintype α] {q : } (hq : q 0) (f : α) :
              f ^ q‖_[1] = f‖_[q] ^ q
              theorem l2Inner_le_lpNorm_mul_lpNorm {α : Type u_3} [Fintype α] {p : NNReal} {q : NNReal} (hpq : p.IsConjExponent q) (f : α) (g : α) :

              Hölder's inequality, binary case.

              theorem abs_l2Inner_le_lpNorm_mul_lpNorm {α : Type u_3} [Fintype α] {p : NNReal} {q : NNReal} (hpq : p.IsConjExponent q) (f : α) (g : α) :
              |l2Inner f g| f‖_[p] * g‖_[q]

              Hölder's inequality, binary case.

              theorem lpNorm_eq_l1Norm_rpow {𝕜 : Type u_2} {α : Type u_3} [Fintype α] [RCLike 𝕜] {p : NNReal} (hp : p 0) (f : α𝕜) :
              f‖_[p] = fun (a : α) => f a ^ p‖_[1] ^ (p)⁻¹
              theorem lpNorm_rpow' {𝕜 : Type u_2} {α : Type u_3} [Fintype α] [RCLike 𝕜] {p : NNReal} {q : NNReal} (hp : p 0) (hq : q 0) (f : α𝕜) :
              f‖_[p] ^ q = (fun (a : α) => f a) ^ q‖_[p / q]
              theorem norm_l2Inner_le {𝕜 : Type u_2} {α : Type u_3} [Fintype α] [RCLike 𝕜] (f : α𝕜) (g : α𝕜) :
              l2Inner f g l2Inner (fun (a : α) => f a) fun (a : α) => g a
              theorem norm_l2Inner_le_lpNorm_mul_lpNorm {𝕜 : Type u_2} {α : Type u_3} [Fintype α] [RCLike 𝕜] {p : NNReal} {q : NNReal} (hpq : p.IsConjExponent q) (f : α𝕜) (g : α𝕜) :

              Hölder's inequality, binary case.

              theorem lpNorm_mul_le {𝕜 : Type u_2} {α : Type u_3} [Fintype α] [RCLike 𝕜] {p : NNReal} {q : NNReal} (hp : p 0) (hq : q 0) (r : NNReal) (hpqr : p⁻¹ + q⁻¹ = r⁻¹) (f : α𝕜) (g : α𝕜) :
              f * g‖_[r] f‖_[p] * g‖_[q]

              Hölder's inequality, binary case.

              theorem l1Norm_mul_le {𝕜 : Type u_2} {α : Type u_3} [Fintype α] [RCLike 𝕜] {p : NNReal} {q : NNReal} (hpq : p.IsConjExponent q) (f : α𝕜) (g : α𝕜) :

              Hölder's inequality, binary case.

              theorem lpNorm_prod_le {ι : Type u_1} {𝕜 : Type u_2} {α : Type u_3} [Fintype α] [RCLike 𝕜] {s : Finset ι} (hs : s.Nonempty) {p : ιNNReal} (hp : ∀ (i : ι), p i 0) (q : NNReal) (hpq : (Finset.sum s fun (i : ι) => (p i)⁻¹) = q⁻¹) (f : ια𝕜) :
              Finset.prod s fun (i : ι) => f i‖_[q] Finset.prod s fun (i : ι) => f i‖_[(p i)]

              Hölder's inequality, finitary case.

              Indicator #

              theorem lpNorm_rpow_indicate {α : Type u_3} {β : Type u_4} [RCLike β] [Fintype α] [DecidableEq α] {p : NNReal} (hp : p 0) (s : Finset α) :
              𝟭 s‖_[p] ^ p = s.card
              theorem lpNorm_indicate {α : Type u_3} {β : Type u_4} [RCLike β] [Fintype α] [DecidableEq α] {p : NNReal} (hp : p 0) (s : Finset α) :
              𝟭 s‖_[p] = s.card ^ (p)⁻¹
              theorem lpNorm_pow_indicate {α : Type u_3} {β : Type u_4} [RCLike β] [Fintype α] [DecidableEq α] {p : } (hp : p 0) (s : Finset α) :
              𝟭 s‖_[p] ^ p = s.card
              theorem l2Norm_sq_indicate {α : Type u_3} {β : Type u_4} [RCLike β] [Fintype α] [DecidableEq α] (s : Finset α) :
              𝟭 s‖_[2] ^ 2 = s.card
              theorem l2Norm_indicate {α : Type u_3} {β : Type u_4} [RCLike β] [Fintype α] [DecidableEq α] (s : Finset α) :
              𝟭 s‖_[2] = s.card
              @[simp]
              theorem l1Norm_indicate {α : Type u_3} {β : Type u_4} [RCLike β] [Fintype α] [DecidableEq α] (s : Finset α) :
              𝟭 s‖_[1] = s.card
              theorem lpNorm_mu {α : Type u_3} {β : Type u_4} [RCLike β] [Fintype α] [DecidableEq α] {s : Finset α} {p : NNReal} (hp : 1 p) (hs : s.Nonempty) :
              μ s‖_[p] = s.card ^ ((p)⁻¹ - 1)
              theorem lpNorm_mu_le {α : Type u_3} {β : Type u_4} [RCLike β] [Fintype α] [DecidableEq α] {s : Finset α} {p : NNReal} (hp : 1 p) :
              μ s‖_[p] s.card ^ (p⁻¹ - 1)
              theorem l1Norm_mu {α : Type u_3} {β : Type u_4} [RCLike β] [Fintype α] [DecidableEq α] {s : Finset α} (hs : s.Nonempty) :
              theorem l1Norm_mu_le_one {α : Type u_3} {β : Type u_4} [RCLike β] [Fintype α] [DecidableEq α] {s : Finset α} :
              @[simp]
              theorem RCLike.lpNorm_coe_comp {α : Type u_3} [Fintype α] {𝕜 : Type u_4} [RCLike 𝕜] (p : ENNReal) (f : α) :
              RCLike.ofReal f‖_[p] = f‖_[p]
              @[simp]
              theorem Complex.lpNorm_coe_comp {α : Type u_3} [Fintype α] (p : ENNReal) (f : α) :