Documentation

LeanAPAP.Prereqs.AddChar.Circle

TODO #

Rename

@[simp]
theorem Circle.coe_exp (r : ) :
(expMapCircle r) = Complex.exp (r * Complex.I)
theorem Circle.exp_int_mul_two_pi (n : ) :
expMapCircle (n * (2 * Real.pi)) = 1
theorem Circle.exp_two_pi_mul_int (n : ) :
expMapCircle (2 * Real.pi * n) = 1
theorem Circle.exp_two_pi :
expMapCircle (2 * Real.pi) = 1
theorem Circle.exp_eq_one {r : } :
expMapCircle r = 1 ∃ (n : ), r = n * (2 * Real.pi)
noncomputable def Circle.e :
Equations
Instances For
    theorem Circle.e_apply (r : ) :
    Circle.e r = expMapCircle (2 * Real.pi * r)
    @[simp]
    theorem Circle.coe_e (r : ) :
    (Circle.e r) = Complex.exp ((2 * Real.pi * r) * Complex.I)
    @[simp]
    theorem Circle.e_int (z : ) :
    Circle.e z = 1
    @[simp]
    theorem Circle.e_one :
    Circle.e 1 = 1
    @[simp]
    theorem Circle.e_add_int {r : } {z : } :
    Circle.e (r + z) = Circle.e r
    @[simp]
    theorem Circle.e_sub_int {r : } {z : } :
    Circle.e (r - z) = Circle.e r
    @[simp]
    theorem Circle.e_fract (r : ) :
    Circle.e (Int.fract r) = Circle.e r
    @[simp]
    theorem Circle.e_mod_div {m : } {n : } :
    Circle.e ((m % n) / n) = Circle.e (m / n)
    theorem Circle.e_eq_one {r : } :
    Circle.e r = 1 ∃ (n : ), r = n
    theorem Circle.e_inj {r : } {s : } :
    Circle.e r = Circle.e s r s [PMOD 1]