sublists #
List.Sublists
gives a list of all (not necessarily contiguous) sublists of a list.
This file contains basic results on this function.
sublists #
theorem
List.sublists'Aux_eq_array_foldl
{α : Type u}
(a : α)
(r₁ : List (List α))
(r₂ : List (List α))
:
List.sublists'Aux a r₁ r₂ = Array.toList
(Array.foldl (fun (r : Array (List α)) (l : List α) => Array.push r (a :: l)) (List.toArray r₂) (List.toArray r₁) 0)
theorem
List.sublists'_eq_sublists'Aux
{α : Type u}
(l : List α)
:
List.sublists' l = List.foldr (fun (a : α) (r : List (List α)) => List.sublists'Aux a r r) [[]] l
@[simp]
theorem
List.sublists'_cons
{α : Type u}
(a : α)
(l : List α)
:
List.sublists' (a :: l) = List.sublists' l ++ List.map (List.cons a) (List.sublists' l)
@[simp]
theorem
List.mem_sublists'
{α : Type u}
{s : List α}
{t : List α}
:
s ∈ List.sublists' t ↔ List.Sublist s t
@[simp]
theorem
List.length_sublists'
{α : Type u}
(l : List α)
:
List.length (List.sublists' l) = 2 ^ List.length l
theorem
List.sublistsAux_eq_array_foldl
{α : Type u}
:
List.sublistsAux = fun (a : α) (r : List (List α)) =>
Array.toList
(Array.foldl (fun (r : Array (List α)) (l : List α) => Array.push (Array.push r l) (a :: l)) #[] (List.toArray r) 0)
theorem
List.sublists_append
{α : Type u}
(l₁ : List α)
(l₂ : List α)
:
List.sublists (l₁ ++ l₂) = do
let x ← List.sublists l₂
List.map (fun (x_1 : List α) => x_1 ++ x) (List.sublists l₁)
theorem
List.sublists_cons
{α : Type u}
(a : α)
(l : List α)
:
List.sublists (a :: l) = do
let x ← List.sublists l
[x, a :: x]
@[simp]
theorem
List.sublists_concat
{α : Type u}
(l : List α)
(a : α)
:
List.sublists (l ++ [a]) = List.sublists l ++ List.map (fun (x : List α) => x ++ [a]) (List.sublists l)
theorem
List.sublists_reverse
{α : Type u}
(l : List α)
:
List.sublists (List.reverse l) = List.map List.reverse (List.sublists' l)
theorem
List.sublists_eq_sublists'
{α : Type u}
(l : List α)
:
List.sublists l = List.map List.reverse (List.sublists' (List.reverse l))
theorem
List.sublists'_reverse
{α : Type u}
(l : List α)
:
List.sublists' (List.reverse l) = List.map List.reverse (List.sublists l)
theorem
List.sublists'_eq_sublists
{α : Type u}
(l : List α)
:
List.sublists' l = List.map List.reverse (List.sublists (List.reverse l))
@[simp]
theorem
List.mem_sublists
{α : Type u}
{s : List α}
{t : List α}
:
s ∈ List.sublists t ↔ List.Sublist s t
@[simp]
theorem
List.length_sublists
{α : Type u}
(l : List α)
:
List.length (List.sublists l) = 2 ^ List.length l
theorem
List.map_pure_sublist_sublists
{α : Type u}
(l : List α)
:
List.Sublist (List.map pure l) (List.sublists l)
@[deprecated List.map_pure_sublist_sublists]
theorem
List.map_ret_sublist_sublists
{α : Type u}
(l : List α)
:
List.Sublist (List.map List.ret l) (List.sublists l)
sublistsLen #
Auxiliary function to construct the list of all sublists of a given length. Given an
integer n
, a list l
, a function f
and an auxiliary list L
, it returns the list made of
f
applied to all sublists of l
of length n
, concatenated with L
.
Equations
- List.sublistsLenAux 0 x✝¹ x✝ x = x✝ [] :: x
- List.sublistsLenAux (Nat.succ n) [] x✝ x = x
- List.sublistsLenAux (Nat.succ n) (a :: l) x✝ x = List.sublistsLenAux (n + 1) l x✝ (List.sublistsLenAux n l (x✝ ∘ List.cons a) x)
Instances For
The list of all sublists of a list l
that are of length n
. For instance, for
l = [0, 1, 2, 3]
and n = 2
, one gets
[[2, 3], [1, 3], [1, 2], [0, 3], [0, 2], [0, 1]]
.
Equations
- List.sublistsLen n l = List.sublistsLenAux n l id []
Instances For
theorem
List.sublistsLenAux_eq
{α : Type u_1}
{β : Type u_2}
(l : List α)
(n : ℕ)
(f : List α → β)
(r : List β)
:
List.sublistsLenAux n l f r = List.map f (List.sublistsLen n l) ++ r
theorem
List.sublistsLenAux_zero
{β : Type v}
{α : Type u_1}
(l : List α)
(f : List α → β)
(r : List β)
:
List.sublistsLenAux 0 l f r = f [] :: r
@[simp]
@[simp]
@[simp]
theorem
List.sublistsLen_succ_cons
{α : Type u_1}
(n : ℕ)
(a : α)
(l : List α)
:
List.sublistsLen (n + 1) (a :: l) = List.sublistsLen (n + 1) l ++ List.map (List.cons a) (List.sublistsLen n l)
theorem
List.sublistsLen_one
{α : Type u_1}
(l : List α)
:
List.sublistsLen 1 l = List.map (fun (x : α) => [x]) (List.reverse l)
@[simp]
theorem
List.length_sublistsLen
{α : Type u_1}
(n : ℕ)
(l : List α)
:
List.length (List.sublistsLen n l) = Nat.choose (List.length l) n
theorem
List.sublistsLen_sublist_sublists'
{α : Type u_1}
(n : ℕ)
(l : List α)
:
List.Sublist (List.sublistsLen n l) (List.sublists' l)
theorem
List.sublistsLen_sublist_of_sublist
{α : Type u_1}
(n : ℕ)
{l₁ : List α}
{l₂ : List α}
(h : List.Sublist l₁ l₂)
:
List.Sublist (List.sublistsLen n l₁) (List.sublistsLen n l₂)
theorem
List.length_of_sublistsLen
{α : Type u_1}
{n : ℕ}
{l : List α}
{l' : List α}
:
l' ∈ List.sublistsLen n l → List.length l' = n
theorem
List.mem_sublistsLen_self
{α : Type u_1}
{l : List α}
{l' : List α}
(h : List.Sublist l' l)
:
l' ∈ List.sublistsLen (List.length l') l
@[simp]
theorem
List.mem_sublistsLen
{α : Type u_1}
{n : ℕ}
{l : List α}
{l' : List α}
:
l' ∈ List.sublistsLen n l ↔ List.Sublist l' l ∧ List.length l' = n
theorem
List.sublistsLen_of_length_lt
{α : Type u}
{n : ℕ}
{l : List α}
(h : List.length l < n)
:
List.sublistsLen n l = []
@[simp]
theorem
List.Pairwise.sublists'
{α : Type u}
{R : α → α → Prop}
{l : List α}
:
List.Pairwise R l → List.Pairwise (List.Lex (Function.swap R)) (List.sublists' l)
theorem
List.pairwise_sublists
{α : Type u}
{R : α → α → Prop}
{l : List α}
(H : List.Pairwise R l)
:
List.Pairwise (fun (l₁ l₂ : List α) => List.Lex R (List.reverse l₁) (List.reverse l₂)) (List.sublists l)
@[simp]
@[simp]
theorem
List.nodup_sublists'
{α : Type u}
{l : List α}
:
List.Nodup (List.sublists' l) ↔ List.Nodup l
theorem
List.nodup.of_sublists
{α : Type u}
{l : List α}
:
List.Nodup (List.sublists l) → List.Nodup l
Alias of the forward direction of List.nodup_sublists
.
Alias of the reverse direction of List.nodup_sublists
.
theorem
List.nodup.of_sublists'
{α : Type u}
{l : List α}
:
List.Nodup (List.sublists' l) → List.Nodup l
Alias of the forward direction of List.nodup_sublists'
.
theorem
List.nodup.sublists'
{α : Type u}
{l : List α}
:
List.Nodup l → List.Nodup (List.sublists' l)
Alias of the reverse direction of List.nodup_sublists'
.
theorem
List.nodup_sublistsLen
{α : Type u}
(n : ℕ)
{l : List α}
(h : List.Nodup l)
:
List.Nodup (List.sublistsLen n l)
theorem
List.sublists_map
{α : Type u}
{β : Type v}
(f : α → β)
(l : List α)
:
List.sublists (List.map f l) = List.map (List.map f) (List.sublists l)
theorem
List.sublists'_map
{α : Type u}
{β : Type v}
(f : α → β)
(l : List α)
:
List.sublists' (List.map f l) = List.map (List.map f) (List.sublists' l)
theorem
List.sublists_perm_sublists'
{α : Type u}
(l : List α)
:
List.Perm (List.sublists l) (List.sublists' l)
theorem
List.sublists_cons_perm_append
{α : Type u}
(a : α)
(l : List α)
:
List.Perm (List.sublists (a :: l)) (List.sublists l ++ List.map (List.cons a) (List.sublists l))
theorem
List.revzip_sublists
{α : Type u}
(l : List α)
(l₁ : List α)
(l₂ : List α)
:
(l₁, l₂) ∈ List.revzip (List.sublists l) → List.Perm (l₁ ++ l₂) l
theorem
List.revzip_sublists'
{α : Type u}
(l : List α)
(l₁ : List α)
(l₂ : List α)
:
(l₁, l₂) ∈ List.revzip (List.sublists' l) → List.Perm (l₁ ++ l₂) l
theorem
List.range_bind_sublistsLen_perm
{α : Type u_1}
(l : List α)
:
List.Perm (List.bind (List.range (List.length l + 1)) fun (n : ℕ) => List.sublistsLen n l) (List.sublists' l)