Parity of natural numbers #
This file contains theorems about the Even
and Odd
predicates on the natural numbers.
Tags #
even, odd
Equations
- Nat.instDecidablePredNatEvenInstAddNat x = decidable_of_iff (x % 2 = 0) ⋯
IsSquare
can be decided on ℕ
by checking against the square root.
Equations
Equations
- Nat.instDecidablePredNatOddInstSemiring x = decidable_of_iff (x % 2 = 1) ⋯
Alias of Nat.Odd.sub_odd
.
@[deprecated Nat.even_mul_pred_self]
Alias of Nat.even_mul_pred_self
.
theorem
Function.Involutive.iterate_bit0
{α : Type u_1}
{f : α → α}
(hf : Function.Involutive f)
(n : ℕ)
:
theorem
Function.Involutive.iterate_bit1
{α : Type u_1}
{f : α → α}
(hf : Function.Involutive f)
(n : ℕ)
:
theorem
Function.Involutive.iterate_two_mul
{α : Type u_1}
{f : α → α}
(hf : Function.Involutive f)
(n : ℕ)
:
theorem
Function.Involutive.iterate_even
{α : Type u_1}
{f : α → α}
{n : ℕ}
(hf : Function.Involutive f)
(hn : Even n)
:
theorem
Function.Involutive.iterate_odd
{α : Type u_1}
{f : α → α}
{n : ℕ}
(hf : Function.Involutive f)
(hn : Odd n)
: