Nilpotent elements #
This file contains results about nilpotent elements that involve ring theory.
theorem
RingHom.ker_isRadical_iff_reduced_of_surjective
{R : Type u_1}
{S : Type u_3}
{F : Type u_4}
[CommSemiring R]
[CommRing S]
[FunLike F R S]
[RingHomClass F R S]
{f : F}
(hf : Function.Surjective ⇑f)
:
Ideal.IsRadical (RingHom.ker f) ↔ IsReduced S
theorem
isRadical_iff_span_singleton
{R : Type u_1}
{y : R}
[CommSemiring R]
:
IsRadical y ↔ Ideal.IsRadical (Ideal.span {y})
The nilradical of a commutative semiring is the ideal of nilpotent elements.
Equations
- nilradical R = Ideal.radical 0
Instances For
theorem
nilradical_eq_sInf
(R : Type u_3)
[CommSemiring R]
:
nilradical R = sInf {J : Ideal R | Ideal.IsPrime J}
theorem
nilpotent_iff_mem_prime
{R : Type u_1}
[CommSemiring R]
{x : R}
:
IsNilpotent x ↔ ∀ (J : Ideal R), Ideal.IsPrime J → x ∈ J
theorem
nilradical_le_prime
{R : Type u_1}
[CommSemiring R]
(J : Ideal R)
[H : Ideal.IsPrime J]
:
nilradical R ≤ J
@[simp]
@[simp]
theorem
LinearMap.isNilpotent_mulLeft_iff
(R : Type u_1)
{A : Type v}
[CommSemiring R]
[Semiring A]
[Algebra R A]
(a : A)
:
IsNilpotent (LinearMap.mulLeft R a) ↔ IsNilpotent a
@[simp]
theorem
LinearMap.isNilpotent_mulRight_iff
(R : Type u_1)
{A : Type v}
[CommSemiring R]
[Semiring A]
[Algebra R A]
(a : A)
:
IsNilpotent (LinearMap.mulRight R a) ↔ IsNilpotent a
@[simp]
theorem
LinearMap.isNilpotent_toMatrix_iff
{R : Type u_1}
[CommSemiring R]
{ι : Type u_3}
{M : Type u_4}
[Fintype ι]
[DecidableEq ι]
[AddCommMonoid M]
[Module R M]
(b : Basis ι R M)
(f : M →ₗ[R] M)
:
IsNilpotent ((LinearMap.toMatrix b b) f) ↔ IsNilpotent f
theorem
Module.End.IsNilpotent.mapQ
{R : Type u_1}
{M : Type v}
[Ring R]
[AddCommGroup M]
[Module R M]
{f : Module.End R M}
{p : Submodule R M}
(hp : p ≤ Submodule.comap f p)
(hnp : IsNilpotent f)
:
IsNilpotent (Submodule.mapQ p p f hp)