Documentation

Pseudorandom.Additive.Main

theorem sub_le_add {α : Type u_1} [DecidableEq α] (A : Finset α) (B : Finset α) [AddCommGroup α] :
(A - B).card (A + B).card ^ 3 / (A.card * B.card)
theorem card_of_inv {α : Type u_1} [DecidableEq α] (A : Finset α) [GroupWithZero α] (a : α) (h : a 0) :
(a A).card = A.card
theorem neg_inter_distrib {α : Type u_1} [DecidableEq α] (A : Finset α) (B : Finset α) [InvolutiveNeg α] :
-A -B = -(A B)
theorem add_smul_subset_smul_add_smul {α : Type u_1} [DecidableEq α] (A : Finset α) [CommSemiring α] (a : α) (b : α) :
(a + b) A a A + b A
theorem sub_smul_subset_smul_sub_smul {α : Type u_1} [DecidableEq α] (A : Finset α) [CommRing α] (a : α) (b : α) :
(a - b) A a A - b A
theorem add_of_large_intersection {α : Type u_1} [DecidableEq α] (A : Finset α) (B : Finset α) (C : Finset α) [AddCommGroup α] (h : (A C).Nonempty) :
(B + C).card (B + A).card * (C + C).card / (A C).card
theorem triple_add {α : Type u_1} [DecidableEq α] (A : Finset α) (B : Finset α) (C : Finset α) [AddCommGroup α] :
(A + B + C).card (C + A).card * (A + B).card ^ 8 / (A.card ^ 6 * B.card ^ 2)
theorem additive_mul_eq {α : Type u_1} [DecidableEq α] (A : Finset α) [Field α] (C : α) (h : C 0) :
E[A, C A] = (Finset.filter (fun (x : (α × α) × α × α) => x.1.1 + C * x.1.2 = x.2.1 + C * x.2.2) ((A ×ˢ A) ×ˢ A ×ˢ A)).card