Documentation

Pseudorandom.SD

noncomputable def SD {α : Type u_1} [Fintype α] (a : FinPMF α) (b : FinPMF α) :
Equations
Instances For
    theorem SD_eq_half_L1 {α : Type u_1} [Fintype α] (a : FinPMF α) (b : FinPMF α) :
    SD a b = 1 / 2 * a - b‖_[1]
    theorem SD_linear_combination_le {α : Type u_1} [Fintype α] {β : Type u_2} [Fintype β] (a : FinPMF α) (f : αFinPMF β) (b : FinPMF β) :
    SD (FinPMF.linear_combination a f) b Finset.sum Finset.univ fun (x : α) => a x * SD (f x) b
    theorem abs_ite (x : ) :
    |x| = if x 0 then x else -x
    theorem SD_eq_sup_sum_diff {α : Type u_1} [Nonempty α] [Fintype α] (a : FinPMF α) (b : FinPMF α) :
    SD a b = ⨆ (S : Finset α), Finset.sum S fun (x : α) => a x - b x
    theorem prb_le_prb_add_sd {α : Type u_1} [Nonempty α] [Fintype α] (a : FinPMF α) (b : FinPMF α) (t : Finset α) :
    (Finset.sum t fun (x : α) => a x) (Finset.sum t fun (x : α) => b x) + SD a b