Lean Bourgain Extractor

2 Growth

Theorem 2.1
#

For any set \(A\) over a finite field of size \(q\) there is a value \(a \neq 0\) such that \(|A + a A| \geq \frac{\min (|A|^2, q)}2\).

Proof

First, we show it’s sufficient for \(a\) to have \(Q(A, aA) \leq |A|^2 + \frac{|A|^2 (|A|^2 - 1)}{q-1}\). We have \(|A + a A| \geq \frac{|A|^2 |a A|^2}{Q(A, aQ)} \geq \frac{|A|^4}{|A|^2 + \frac{|A|^2 (|A|^2 - 1)}{q-1}}\). We need to show \(\frac{x^2}{x + \frac{x(x-1)}{q-1}} \geq \frac{\min (x, q)}2\). If \(x {\lt} q\) then

\[ \frac{x^2}{x + \frac{x (x - 1)}{q-1}} \geq \frac{x^2}{x + \frac{x^2}{x}} = \frac x2. \]

Otherwise, if \(q \leq x\), we need to show

\[ \frac{x^2}{x + \frac{x (x - 1)}{q-1}} - \frac q2 \geq 0. \]

By directly expanding, we have

\[ \frac{x^2}{x + \frac{x (x - 1)}{q-1}} - \frac q2 = \frac{(q-2) (x - q)}{2 (q + x - 2)} \]

We have \(2 \leq q\), so this value is nonnegative. Now to show that for some \(a\), \(Q(A, aA) \leq |A|^2 + \frac{|A|^2 (|A|^2 - 1)}{q-1}\). Now we show it suffices to show that \(\sum _{a \neq 0} Q(A, a A) \leq |A|^2 (q-1) + |A|^2 (|A|^2 - 1)\). This is because if all values were larger than \(|A|^2 + \frac{|A|^2 (|A|^2 - 1)}{q-1}\), the sum couldn’t’ve been so small.

To show \(\sum _{a \neq 0} Q(A, a A) \leq |A|^2 (q-1) + |A|^2 (|A|^2 - 1)\), we can use 1.8. The quadruples with \(a = c, b = d\) contribute at most \(|A|^2 (q-1)\), and the other quadruples contribute at most \(|A|^2 (|A|^2 - 1)\), because they determine a unique \(a\).

Theorem 2.2
#

For any set \(A\) in \(\mathbb {F}_p\) (for \(p\) prime), we have \(|3 A^2 - 3 A^2| \geq \frac{\min (|A|^2, p)}2\).

Proof

If \(|A| \leq 1\) then \(|3 A^2 - 3 A^2| = |A|\), and this is greater than \(|A|^2 / 2\). Otherwise, we split into cases by whether \(\frac{A - A}{A - A}\) is the entire universe. If it is, then by 2.1 we have some value \(v = (a-b)/(c-d)\) such that \(|A + vA| \geq \frac{\min (|A|^2, p)}2\). By 1.2, we have \(|A + vA| = |(c-d) A + (a-b) A|\). Now \((c-d) A + (a-b) A\), by 1.5, this is a subset of \(c A + a A - d A - b A\), which is a subset of \(2 A^2 - 2 A^2\), and then \(|3A^2 - 3A^2| = |A^2 - A^2 + 2 A^2 - 2 A^2| \geq |2 A^2 - 2 A^2| \geq \frac{\min (|A|^2, p)}2\).

Otherwise, there must be some value such that \(v = (a-b)/(c-d)\) such that \((a-b+c-d)/(c-d) = (a-b)/(c-d)+1 \notin \frac{A - A}{A - A}\). Because of that \(|A + (a-b+c-d)/(c-d) A| = |A|^2\), so \(|(c-d) A + (a-b+c-d) A| = |A|^2\). Using 1.5 and 1.4 we have \((c-d) A + (a-b+c-d) A \subseteq 3A^2 - 3A^2\), so \(|3A^2 - 3A^2| \geq |A|^2 \geq \frac{|A|^2}2\).