2 Growth
For any set \(A\) over a finite field of size \(q\) there is a value \(a \neq 0\) such that \(|A + a A| \geq \frac{\min (|A|^2, q)}2\).
First, we show it’s sufficient for \(a\) to have \(Q(A, aA) \leq |A|^2 + \frac{|A|^2 (|A|^2 - 1)}{q-1}\). We have \(|A + a A| \geq \frac{|A|^2 |a A|^2}{Q(A, aQ)} \geq \frac{|A|^4}{|A|^2 + \frac{|A|^2 (|A|^2 - 1)}{q-1}}\). We need to show \(\frac{x^2}{x + \frac{x(x-1)}{q-1}} \geq \frac{\min (x, q)}2\). If \(x {\lt} q\) then
Otherwise, if \(q \leq x\), we need to show
By directly expanding, we have
We have \(2 \leq q\), so this value is nonnegative. Now to show that for some \(a\), \(Q(A, aA) \leq |A|^2 + \frac{|A|^2 (|A|^2 - 1)}{q-1}\). Now we show it suffices to show that \(\sum _{a \neq 0} Q(A, a A) \leq |A|^2 (q-1) + |A|^2 (|A|^2 - 1)\). This is because if all values were larger than \(|A|^2 + \frac{|A|^2 (|A|^2 - 1)}{q-1}\), the sum couldn’t’ve been so small.
To show \(\sum _{a \neq 0} Q(A, a A) \leq |A|^2 (q-1) + |A|^2 (|A|^2 - 1)\), we can use 1.8. The quadruples with \(a = c, b = d\) contribute at most \(|A|^2 (q-1)\), and the other quadruples contribute at most \(|A|^2 (|A|^2 - 1)\), because they determine a unique \(a\).
For any set \(A\) in \(\mathbb {F}_p\) (for \(p\) prime), we have \(|3 A^2 - 3 A^2| \geq \frac{\min (|A|^2, p)}2\).
If \(|A| \leq 1\) then \(|3 A^2 - 3 A^2| = |A|\), and this is greater than \(|A|^2 / 2\). Otherwise, we split into cases by whether \(\frac{A - A}{A - A}\) is the entire universe. If it is, then by 2.1 we have some value \(v = (a-b)/(c-d)\) such that \(|A + vA| \geq \frac{\min (|A|^2, p)}2\). By 1.2, we have \(|A + vA| = |(c-d) A + (a-b) A|\). Now \((c-d) A + (a-b) A\), by 1.5, this is a subset of \(c A + a A - d A - b A\), which is a subset of \(2 A^2 - 2 A^2\), and then \(|3A^2 - 3A^2| = |A^2 - A^2 + 2 A^2 - 2 A^2| \geq |2 A^2 - 2 A^2| \geq \frac{\min (|A|^2, p)}2\).
Otherwise, there must be some value such that \(v = (a-b)/(c-d)\) such that \((a-b+c-d)/(c-d) = (a-b)/(c-d)+1 \notin \frac{A - A}{A - A}\). Because of that \(|A + (a-b+c-d)/(c-d) A| = |A|^2\), so \(|(c-d) A + (a-b+c-d) A| = |A|^2\). Using 1.5 and 1.4 we have \((c-d) A + (a-b+c-d) A \subseteq 3A^2 - 3A^2\), so \(|3A^2 - 3A^2| \geq |A|^2 \geq \frac{|A|^2}2\).