Lean Bourgain Extractor

3 Stabilizer

Definition 3.1
#

\(\operatorname{\operatorname {Stab}}_K(A)\) is the set \(\{ x | |A + x A| \leq K |A|\} \).

Lemma 3.2
#

For \(a \in \operatorname{\operatorname {Stab}}_K(A)\), we also have \(a^{-1} \in \operatorname{\operatorname {Stab}}_K(A)\).

Proof

If \(a = 0\) this is trivial, otherwise by 1.2 we have \(|A + a^{-1}A| = |a(A + a^{-1}A)| = |A + a A| \leq K |A|\).

Lemma 3.3
#

If \(A \neq \emptyset \) and \(a \in \operatorname{\operatorname {Stab}}_K(A)\) then \(1 \leq K\).

Proof

Trivial.

Lemma 3.4
#

For \(a \in \operatorname{\operatorname {Stab}}_K(A)\), we also have \(a \in \operatorname{\operatorname {Stab}}_{K^3}(A)\).

Proof

If \(a = 0\) or \(A = \emptyset \) this is trivial, otherwise by 1.1 and 1.2 we have

\[ |A - a A| \leq \frac{|A + aA|^3}{|A| |a A|} = \frac{|A + aA|^3}{|A|^2} \leq \frac{K^3 |A|^3}{|A|^2} = K^3 |A| \]
Lemma 3.5
#

We have \(-\operatorname{\operatorname {Stab}}_{K}(A) \subseteq \operatorname{\operatorname {Stab}}_{K^3}(A)\).

Proof

Immediate from 3.4.

Lemma 3.6
#

For \(a \in \operatorname{\operatorname {Stab}}_{K_1}(A), b \in \operatorname{\operatorname {Stab}}_{K_2}(A)\), we have \(a+b \in \operatorname{\operatorname {Stab}}_{K_1^8 K_2}(A)\).

Proof

If \(a = 0\) or \(A = \emptyset \) this is trivial. Otherwise, we have \(A + (a+b) A \subseteq A + a A + b A\), by 1.4, and by 1.7 and 1.2 we have \(|A + a A + b A| \leq \frac{|A + bA| |A + aA|^8}{|A|^8} \leq K_1^8 K_2 |A|\).

Lemma 3.7
#

We have \(\operatorname{\operatorname {Stab}}_{K_1}(A) + \operatorname{\operatorname {Stab}}_{K_2}(A) \subseteq \operatorname{\operatorname {Stab}}_{K_1^8 K_2}(A)\).

Proof

Immediate from 3.6.

Lemma 3.8
#

For \(n \in \mathbb {N}\) we have \((n+1) \cdot \operatorname{\operatorname {Stab}}_{K}(A) \subseteq \operatorname{\operatorname {Stab}}_{K^{8n + 1}}(A)\).

Proof

By induction with 3.7.

Lemma 3.9
#

We have \(\operatorname{\operatorname {Stab}}_{K_1}(A) - \operatorname{\operatorname {Stab}}_{K_2}(A) \subseteq \operatorname{\operatorname {Stab}}_{K_1^8 K_2^3}(A)\).

Proof

Immediate from 3.7 and 3.5.

Lemma 3.10
#

For \(a \in \operatorname{\operatorname {Stab}}_{K_1}(A), b \in \operatorname{\operatorname {Stab}}_{K_2}(A)\), we have \(ab \in \operatorname{\operatorname {Stab}}_{K_1 K_2}(A)\).

Proof

If \(a = 0\) this is trivial with 3.3. Otherwise, we have, by 1.2 \(|A + a b A| = |a^{-1} A + b A|\). By the triangle inequality we have \(|a^{-1} A + b A| \leq \frac{|A + a^{-1} A| |A + b A|}{|A|}\), and using 3.2 we get that this is \(\leq K_1 K_2 |A|\).

Lemma 3.11
#

We have \(\operatorname{\operatorname {Stab}}_{K_1}(A) \operatorname{\operatorname {Stab}}_{K_2}(A) \subseteq \operatorname{\operatorname {Stab}}_{K_1 K_2}(A)\).

Proof

Immediate from 3.10.

Lemma 3.12
#

If \(a \in \operatorname{\operatorname {Stab}}_K(A)\) and \(K \leq K'\) then \(a \in \operatorname{\operatorname {Stab}}_{K'}(A)\).

Proof

Trivial from the definition.

Lemma 3.13
#

If \(K \leq K'\) then \(\operatorname{\operatorname {Stab}}_K(A) \subseteq \operatorname{\operatorname {Stab}}_{K'}(A)\).

Proof

Trivial from 3.12

Lemma 3.14
#

If \(1 \leq K\) implies \(K \leq K'\) then \(\operatorname{\operatorname {Stab}}_K(A) \subseteq \operatorname{\operatorname {Stab}}_{K'}(A)\).

Proof

If \(A = \emptyset \) this is trivial. Otherwise, if \(K {\lt} 1\) then from 3.3 \(\operatorname{\operatorname {Stab}}_K(A) = \emptyset \) and this is trivial. Otherwise we get 3.13.

Lemma 3.15
#

We have \(3 \operatorname{\operatorname {Stab}}_K(A)^2 - 3 \operatorname{\operatorname {Stab}}_K(A)^2 \subseteq \operatorname{\operatorname {Stab}}_{K^{374}}(A)\).

Proof

Immediate from 3.8, 3.9 and 3.11.

Lemma 3.16
#

We have \(\frac{\min (|\operatorname{\operatorname {Stab}}_K(A)|^2, p)}2 \leq |\operatorname{\operatorname {Stab}}_{K^{374}}(A)|\).

Proof

Immediate from 3.15 and 2.2.

Lemma 3.17
#

If \(4 \leq |\operatorname{\operatorname {Stab}}_K(A)|\), then \(\min (|\operatorname{\operatorname {Stab}}_K(A)|^{\frac32}, \frac p2) \leq |\operatorname{\operatorname {Stab}}_{K^{374}}(A)|\).

Proof

From direct calculation using 3.16.

Lemma 3.18
#

If \(4 \leq |\operatorname{\operatorname {Stab}}_K(A)|\) for all \(n \in \mathbb {N}\), \(\min (|\operatorname{\operatorname {Stab}}_K(A)|^{\left(\frac32\right)^n}, \frac p2) \leq |\operatorname{\operatorname {Stab}}_{K^{374^n}}(A)|\).

Proof

By induction on 3.17.

Definition 3.19
#

\(\mathrm{StabC}_2(\beta ) = 374^{\lceil \log _{\frac32}(1 / \beta ) \rceil }\)

Lemma 3.20
#

If \(4 \leq |\operatorname{\operatorname {Stab}}_K(A)|\) and \(p^\beta \leq |\operatorname{\operatorname {Stab}}_K(A)|\), then \(\frac{p}2 \leq |\operatorname{\operatorname {Stab}}_{K^{\mathrm{StabC}_2(\beta )}}(A)|\).

Proof

By setting \(n = \mathrm{StabC}_2(\beta )\) at 3.18.

Definition 3.21
#

\(\mathrm{StabC}(\beta ) = 9 \mathrm{StabC}_2(\beta )\)

Lemma 3.22

If \(4 \leq |\operatorname{\operatorname {Stab}}_K(A)|\) and \(p^\beta \leq |\operatorname{\operatorname {Stab}}_K(A)|\), then \(\operatorname{\operatorname {Stab}}_{K^{\mathrm{StabC}(\beta )}} (A) = \mathbb {F}\).

Proof

By Cauchy-Davenport and 3.7 after ??.

Lemma 3.23
#

If \(p^\beta \leq |A| \leq p^{1 - \beta }\) and \(K {\lt} \frac{p^\beta }2\), then \(\operatorname{\operatorname {Stab}}_K(A) \neq \mathbb {F}\).

Proof

2.1 gives a value \(a\) which by direct computation we can show isn’t in \(\operatorname{\operatorname {Stab}}_K(A)\).

Lemma 3.24
#

If \(4 \leq |\operatorname{\operatorname {Stab}}_K(A)|, p^\beta \leq |\operatorname{\operatorname {Stab}}_K(A)|, p^\gamma \leq |A| \leq p^{1 - \gamma }\) then \(\frac{p^\gamma }2 \leq K^{\mathrm{StabC}(\beta )}\)

Proof

By applying 3.22 and 3.23.