Lean Bourgain Extractor

12 Lemmas about the Inner Product Extractor

Proposition 12.1
#

For a character \(\chi \), \(\chi (a) = \chi (b)\) iff \(\chi (a-b) = 1\).

Proposition 12.2
#

The inner product is commutitive.

Lemma 12.3
#

If \(\chi \) is a non-trivial character of a field \(\mathbb {F}\), then there is an injective function from elements of \(\mathbb {F}^2\) (red generalize this to any dimension) to characters of it, defined by \(f(x)(y) = \chi (x \cdot y)\).

Proof

It’s easy to see this maps values to additive characters. For injectivity, we have some value \(x\) such that \(\chi (x) \neq 1\). Now if \(f((a_1, a_2)) = f((b_1, b_2))\), if they aren’t equal, we can apply either \(\frac{x}{a_1 - b_1}\) or \(\frac{x}{a_2 - b_2}\), and then we get \(\chi (x) = 1\) by 12.1, a contradiction.

Lemma 12.4
#

The function in the previous lemma is actually a bijection.

Proof

By 12.3 and the cardinality being equal.

Theorem 12.5
#

Note: the inner product and DFT here aren’t normalized.

\[ \sum _x{a(x)\sum _y{b(y) \chi (x \cdot y)}} = \langle a, P(\hat b) \rangle \]

where \(P\) reorders \(\hat b\) based on 12.4

Proof

TODO

Theorem 12.6
#
\[ |\sum _x{a(x)\sum _y{b(y) \chi (x \cdot y)}}|^2 \leq |A|^2 \lVert a \rVert _{\ell ^2}^2 \lVert b \rVert _{\ell ^2}^2 \]
Proof

We use 12.5 to rewrite the sum, and then use Cauchy-Schwartz. Then we can undo the reordering and use Parseval’s theorem to get the desired result.

Theorem 12.7
#
\[ |\sum _x{a(x)\sum _y{b(y) \chi (x \cdot y)}}| \leq |A| \lVert a \rVert _{\ell ^2} \lVert b \rVert _{\ell ^2} \]
Proof

Simplying apply a square root to 12.6.

Theorem 12.8
#

For any bilinear form \(F\) and character \(\chi \),

\[ |\sum _x{a(x) \sum _y{b(y) \chi (F(x, y))}}|^2 \leq |\sum _x{a(x) \sum _y{(b-b)(y) \chi (F(x, y))}}| \]
Proof
\begin{align} |\sum _x{a(x) \sum _y{b(y) \chi (F(x, y))}}|^2 & \leq & (\sum _x{a(x) |\sum _y{b(y) \chi (F(x, y))} | })^2 \\ & \leq & \sum _x{a(x) |\sum _y{b(y) \chi (F(x, y))} |^2}\\ & =& \sum _x{a(x) (\sum _y{b(y) \chi (F(x, y))}) \bar{(\sum _y{b(y) \chi (F(x, y))})}} \\ & =& \sum _x{a(x) \sum _y \sum _{y'}{b(y) b(y’) \chi (F(x, y)) \chi (-F(x, y’))} } \\ & =& \sum _x{a(x) \sum _y \sum _{y'}{b(y) b(y’) \chi (F(x, y - y’))} } \\ & =& \sum _x{a(x) \sum _y{(b-b)(y) \chi (F(x, y))} } \\ \end{align}
Theorem 12.9
#

For any bilinear form \(F\) and character \(\chi \),

\[ |\sum _x{a(x) \sum _y{b(y) \chi (F(x, y))}}| \leq \sqrt{|\sum _x{a(x) \sum _y{(b-b)(y) \chi (F(x, y))}}|} \]
Proof

Trivial from 12.8.

Theorem 12.10
#

If \(a\) and \(b\) are \(\varepsilon \)-close to \(N\) entropy, then

\[ |\sum _x{a(x) \sum _y{b(y) \chi (F(x, y))}}| \leq \frac{|A|}N + 2\varepsilon \]
Proof

From the hypothesis and 9.21 we can look at \(a'(x) = \begin{cases} a(x) & a(x) \leq \frac1N \\ 0 & \frac1N {\lt} a(x)\end{cases}\), and similarly for \(b'\), and the difference would be at most \(2 \varepsilon \). Then we can apply 12.7 to get the result.