theorem
thing_one
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[DecidableEq G]
{β : Type u_2}
[CommSemiring β]
[StarRing β]
{A : Finset G}
{B : Finset G}
{x : G}
:
theorem
thing_one_right
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[DecidableEq G]
{β : Type u_2}
[CommSemiring β]
[StarRing β]
{A : Finset G}
{B : Finset G}
{x : G}
:
theorem
thing_two
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[DecidableEq G]
{β : Type u_2}
[CommSemiring β]
[StarRing β]
{A : Finset G}
{B : Finset G}
:
theorem
thing_three
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[DecidableEq G]
{β : Type u_2}
[CommSemiring β]
[StarRing β]
{A : Finset G}
{B : Finset G}
:
theorem
claim_one
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[DecidableEq G]
{β : Type u_2}
[CommSemiring β]
[StarRing β]
{A : Finset G}
{B : Finset G}
:
theorem
claim_three
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[DecidableEq G]
{A : Finset G}
{B : Finset G}
{H : Finset (G × G)}
(hH : H ⊆ A ×ˢ A)
:
theorem
claim_five
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[DecidableEq G]
{A : Finset G}
{B : Finset G}
{H : Finset (G × G)}
(hH : H ⊆ A ×ˢ A)
:
noncomputable def
H_choice
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[DecidableEq G]
(A : Finset G)
(B : Finset G)
(c : ℝ)
:
Equations
Instances For
theorem
claim_seven
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[DecidableEq G]
{A : Finset G}
{B : Finset G}
(c : ℝ)
(hc : 0 ≤ c)
(hA : 0 < ↑A.card)
(hB : 0 < ↑B.card)
:
theorem
claim_eight
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[DecidableEq G]
{A : Finset G}
{B : Finset G}
(c : ℝ)
(hc : 0 ≤ c)
(hA : 0 < ↑A.card)
(hB : 0 < ↑B.card)
:
theorem
oneOfPair_mem'
{G : Type u_1}
[AddCommGroup G]
[DecidableEq G]
{x : G}
{H : Finset (G × G)}
{X : Finset G}
(hH : H ⊆ X ×ˢ X)
:
(Finset.filter (fun (yz : G × G) => yz.1 = x) H).card = (Finset.filter (fun (c : G) => (x, c) ∈ H) X).card
theorem
oneOfPair_bound_one
{G : Type u_1}
[DecidableEq G]
{H : Finset (G × G)}
{X : Finset G}
:
(Finset.sum (X \ oneOfPair H X) fun (x : G) => ↑(Finset.filter (fun (xy : G × G) => xy.1 = x) H).card) ≤ 3 / 4 * ↑X.card ^ 2
theorem
quadruple_bound_right
{G : Type u_1}
[AddCommGroup G]
[DecidableEq G]
{B : Finset G}
{x : G}
{a : G}
{b : G}
(H : Finset (G × G))
(X : Finset G)
(h : x = a - b)
:
↑(Finset.sigma (Finset.filter (fun (c : G) => (a, c) ∈ H ∧ (b, c) ∈ H) X) fun (c : G) =>
Finset.filter
(fun (x : (G × G) × G × G) =>
match x with
| ((a₁, a₂), a₃, a₄) => a₁ - a₂ = a - c ∧ a₃ - a₄ = b - c)
((B ×ˢ B) ×ˢ B ×ˢ B)).card ≤ ↑(Finset.filter
(fun (x : (G × G) × G × G) =>
match x with
| ((a₁, a₂), a₃, a₄) => a₁ - a₂ - (a₃ - a₄) = a - b)
((B ×ˢ B) ×ˢ B ×ˢ B)).card
theorem
quadruple_bound_c
{G : Type u_1}
[AddCommGroup G]
[DecidableEq G]
{X : Finset G}
{a : G}
{b : G}
{H : Finset (G × G)}
(ha : a ∈ oneOfPair H X)
(hb : b ∈ oneOfPair H X)
(hH : H ⊆ X ×ˢ X)
:
theorem
quadruple_bound_left
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[DecidableEq G]
{A : Finset G}
{B : Finset G}
{X : Finset G}
{a : G}
{b : G}
{K : ℝ}
{H : Finset (G × G)}
(ha : a ∈ oneOfPair H X)
(hb : b ∈ oneOfPair H X)
(hH : ∀ x ∈ H, 1 / 8 / 2 * (K ^ 2)⁻¹ * ↑A.card ≤ (𝟭 B ○ 𝟭 B) (x.1 - x.2))
(hH' : H ⊆ X ×ˢ X)
:
theorem
quadruple_bound
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[DecidableEq G]
{A : Finset G}
{B : Finset G}
{H : Finset (G × G)}
{X : Finset G}
{K : ℝ}
{x : G}
(hx : x ∈ oneOfPair H X - oneOfPair H X)
(hH : ∀ x ∈ H, 1 / 8 / 2 * (K ^ 2)⁻¹ * ↑A.card ≤ (𝟭 B ○ 𝟭 B) (x.1 - x.2))
(hH' : H ⊆ X ×ˢ X)
: