Documentation

LeanAPAP.Prereqs.Discrete.LpNorm.Compact

Normalised Lp norms #

Lp norm #

noncomputable def nlpNorm {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] (p : ENNReal) (f : (i : ι) → α i) :

The Lp norm of a function with the compact normalisation.

Equations
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem nlpNorm_eq_expect' {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} (hp : p.toReal 0) (f : (i : ι) → α i) :
      f‖ₙ_[p] = (Finset.expect Finset.univ fun (i : ι) => f i ^ p.toReal) ^ p.toReal⁻¹
      theorem nlpNorm_eq_expect'' {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : } (hp : 0 < p) (f : (i : ι) → α i) :
      f‖ₙ_[(Real.toNNReal p)] = (Finset.expect Finset.univ fun (i : ι) => f i ^ p) ^ p⁻¹
      theorem nlpNorm_eq_expect {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : NNReal} (hp : p 0) (f : (i : ι) → α i) :
      f‖ₙ_[p] = (Finset.expect Finset.univ fun (i : ι) => f i ^ p) ^ (p)⁻¹
      theorem nlpNorm_rpow_eq_expect {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : NNReal} (hp : p 0) (f : (i : ι) → α i) :
      f‖ₙ_[p] ^ p = Finset.expect Finset.univ fun (i : ι) => f i ^ p
      theorem nlpNorm_pow_eq_expect {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : } (hp : p 0) (f : (i : ι) → α i) :
      f‖ₙ_[p] ^ p = Finset.expect Finset.univ fun (i : ι) => f i ^ p
      theorem nl2Norm_sq_eq_expect {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] (f : (i : ι) → α i) :
      f‖ₙ_[2] ^ 2 = Finset.expect Finset.univ fun (i : ι) => f i ^ 2
      theorem nl2Norm_eq_expect {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] (f : (i : ι) → α i) :
      f‖ₙ_[2] = (Finset.expect Finset.univ fun (i : ι) => f i ^ 2)
      theorem nl1Norm_eq_expect {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] (f : (i : ι) → α i) :
      f‖ₙ_[1] = Finset.expect Finset.univ fun (i : ι) => f i
      theorem nl0Norm_eq_card {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] (f : (i : ι) → α i) :
      theorem nlinftyNorm_eq_ciSup {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] (f : (i : ι) → α i) :
      f‖ₙ_[] = ⨆ (i : ι), f i
      @[simp]
      theorem nlpNorm_zero {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} :
      @[simp]
      theorem nlpNorm_of_isEmpty {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] [IsEmpty ι] (p : ENNReal) (f : (i : ι) → α i) :
      @[simp]
      theorem nlpNorm_norm {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] (p : ENNReal) (f : (i : ι) → α i) :
      fun (i : ι) => f i‖ₙ_[p] = f‖ₙ_[p]
      @[simp]
      theorem nlpNorm_neg {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} (f : (i : ι) → α i) :
      theorem nlpNorm_sub_comm {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} (f : (i : ι) → α i) (g : (i : ι) → α i) :
      @[simp]
      theorem nlpNorm_nonneg {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} {f : (i : ι) → α i} :
      @[simp]
      theorem nlpNorm_eq_zero {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} {f : (i : ι) → α i} [Nonempty ι] :
      @[simp]
      theorem nlpNorm_pos {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} {f : (i : ι) → α i} [Nonempty ι] :
      theorem nlpNorm_mono_right {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} {q : ENNReal} (hpq : p q) (f : (i : ι) → α i) :
      theorem nlpNorm_add_le {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} (hp : 1 p) (f : (i : ι) → α i) (g : (i : ι) → α i) :
      theorem nlpNorm_sub_le {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} (hp : 1 p) (f : (i : ι) → α i) (g : (i : ι) → α i) :
      theorem nlpNorm_le_nlpNorm_add_nlpNorm_sub' {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} (hp : 1 p) (f : (i : ι) → α i) (g : (i : ι) → α i) :
      theorem nlpNorm_le_nlpNorm_add_nlpNorm_sub {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} (hp : 1 p) (f : (i : ι) → α i) (g : (i : ι) → α i) :
      theorem nlpNorm_le_add_nlpNorm_add {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} (hp : 1 p) (f : (i : ι) → α i) (g : (i : ι) → α i) :
      theorem nlpNorm_sub_le_nlpNorm_sub_add_nlpNorm_sub {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} {h : (i : ι) → α i} (hp : 1 p) (f : (i : ι) → α i) (g : (i : ι) → α i) :
      theorem nlpNorm_smul {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} [NormedField 𝕜] [(i : ι) → NormedSpace 𝕜 (α i)] (hp : 1 p) (c : 𝕜) (f : (i : ι) → α i) :
      theorem nlpNorm_nsmul {ι : Type u_1} [Fintype ι] {α : ιType u_3} [(i : ι) → NormedAddCommGroup (α i)] {p : ENNReal} [(i : ι) → NormedSpace (α i)] (hp : 1 p) (n : ) (f : (i : ι) → α i) :
      @[simp]
      theorem nlpNorm_const {ι : Type u_1} [Fintype ι] {α : Type u_3} [NormedAddCommGroup α] {p : ENNReal} [Nonempty ι] (hp : p 0) (a : α) :
      @[simp]
      theorem nlpNorm_one {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [RCLike 𝕜] {p : ENNReal} [Nonempty ι] (hp : p 0) :
      theorem nlpNorm_natCast_mul {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [RCLike 𝕜] {p : ENNReal} (hp : 1 p) (n : ) (f : ι𝕜) :
      n * f‖ₙ_[p] = n * f‖ₙ_[p]
      theorem nlpNorm_natCast_mul' {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [RCLike 𝕜] {p : ENNReal} (hp : 1 p) (n : ) (f : ι𝕜) :
      fun (x : ι) => n * f x‖ₙ_[p] = n * f‖ₙ_[p]
      theorem nlpNorm_mul_natCast {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [RCLike 𝕜] {p : ENNReal} (hp : 1 p) (f : ι𝕜) (n : ) :
      f * n‖ₙ_[p] = f‖ₙ_[p] * n
      theorem nlpNorm_mul_natCast' {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [RCLike 𝕜] {p : ENNReal} (hp : 1 p) (f : ι𝕜) (n : ) :
      fun (x : ι) => f x * n‖ₙ_[p] = f‖ₙ_[p] * n
      theorem nlpNorm_div_natCast' {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [RCLike 𝕜] {p : ENNReal} (hp : 1 p) (f : ι𝕜) (n : ) :
      fun (x : ι) => f x / n‖ₙ_[p] = f‖ₙ_[p] / n
      theorem nlpNorm_div_natCast {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [RCLike 𝕜] {p : ENNReal} (hp : 1 p) (f : ι𝕜) (n : ) :
      f / n‖ₙ_[p] = f‖ₙ_[p] / n
      theorem nlpNorm_mono {ι : Type u_1} [Fintype ι] {p : NNReal} {f : ι} {g : ι} (hf : 0 f) (hfg : f g) :

      Inner product #

      def nl2Inner {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [Semifield 𝕜] [CharZero 𝕜] [StarRing 𝕜] (f : ι𝕜) (g : ι𝕜) :
      𝕜

      Inner product giving rise to the L2 norm with the compact normalisation.

      Equations
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem nl2Inner_eq_expect {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [Semifield 𝕜] [CharZero 𝕜] [StarRing 𝕜] (f : ι𝕜) (g : ι𝕜) :
          nl2Inner f g = Finset.expect Finset.univ fun (i : ι) => (starRingEnd 𝕜) (f i) * g i
          theorem nl2Inner_eq_l2Inner_div_card {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [Semifield 𝕜] [CharZero 𝕜] [StarRing 𝕜] (f : ι𝕜) (g : ι𝕜) :
          nl2Inner f g = l2Inner f g / (Fintype.card ι)
          @[simp]
          theorem conj_nl2Inner {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [Semifield 𝕜] [CharZero 𝕜] [StarRing 𝕜] (f : ι𝕜) (g : ι𝕜) :
          (starRingEnd 𝕜) (nl2Inner f g) = nl2Inner g f
          @[simp]
          theorem nl2Inner_zero_left {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [Semifield 𝕜] [CharZero 𝕜] [StarRing 𝕜] (g : ι𝕜) :
          nl2Inner 0 g = 0
          @[simp]
          theorem nl2Inner_zero_right {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [Semifield 𝕜] [CharZero 𝕜] [StarRing 𝕜] (f : ι𝕜) :
          nl2Inner f 0 = 0
          @[simp]
          theorem nl2Inner_of_isEmpty {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [Semifield 𝕜] [CharZero 𝕜] [StarRing 𝕜] [IsEmpty ι] (f : ι𝕜) (g : ι𝕜) :
          nl2Inner f g = 0
          @[simp]
          theorem nl2Inner_const_left {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [Semifield 𝕜] [CharZero 𝕜] [StarRing 𝕜] (a : 𝕜) (f : ι𝕜) :
          nl2Inner (Function.const ι a) f = (starRingEnd 𝕜) a * Finset.expect Finset.univ fun (x : ι) => f x
          @[simp]
          theorem nl2Inner_const_right {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [Semifield 𝕜] [CharZero 𝕜] [StarRing 𝕜] (f : ι𝕜) (a : 𝕜) :
          nl2Inner f (Function.const ι a) = (Finset.expect Finset.univ fun (x : ι) => (starRingEnd 𝕜) (f x)) * a
          theorem nl2Inner_add_left {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [Semifield 𝕜] [CharZero 𝕜] [StarRing 𝕜] (f₁ : ι𝕜) (f₂ : ι𝕜) (g : ι𝕜) :
          nl2Inner (f₁ + f₂) g = nl2Inner f₁ g + nl2Inner f₂ g
          theorem nl2Inner_add_right {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [Semifield 𝕜] [CharZero 𝕜] [StarRing 𝕜] (f : ι𝕜) (g₁ : ι𝕜) (g₂ : ι𝕜) :
          nl2Inner f (g₁ + g₂) = nl2Inner f g₁ + nl2Inner f g₂
          theorem nl2Inner_smul_left {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [Semifield 𝕜] [CharZero 𝕜] [StarRing 𝕜] {γ : Type u_3} [DistribSMul γ 𝕜] [Star γ] [StarModule γ 𝕜] [SMulCommClass γ ℚ≥0 𝕜] [IsScalarTower γ 𝕜 𝕜] (c : γ) (f : ι𝕜) (g : ι𝕜) :
          nl2Inner (c f) g = star c nl2Inner f g
          theorem nl2Inner_smul_right {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [Semifield 𝕜] [CharZero 𝕜] [StarRing 𝕜] {γ : Type u_3} [DistribSMul γ 𝕜] [Star γ] [StarModule γ 𝕜] [SMulCommClass γ ℚ≥0 𝕜] [IsScalarTower γ 𝕜 𝕜] [SMulCommClass γ 𝕜 𝕜] (c : γ) (f : ι𝕜) (g : ι𝕜) :
          nl2Inner f (c g) = c nl2Inner f g
          theorem smul_nl2Inner_left {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [Semifield 𝕜] [CharZero 𝕜] [StarRing 𝕜] {γ : Type u_3} [DistribSMul γ 𝕜] [InvolutiveStar γ] [StarModule γ 𝕜] [SMulCommClass γ ℚ≥0 𝕜] [IsScalarTower γ 𝕜 𝕜] (c : γ) (f : ι𝕜) (g : ι𝕜) :
          c nl2Inner f g = nl2Inner (star c f) g
          @[simp]
          theorem nl2Inner_neg_left {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [Field 𝕜] [CharZero 𝕜] [StarRing 𝕜] (f : ι𝕜) (g : ι𝕜) :
          @[simp]
          theorem nl2Inner_neg_right {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [Field 𝕜] [CharZero 𝕜] [StarRing 𝕜] (f : ι𝕜) (g : ι𝕜) :
          theorem nl2Inner_sub_left {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [Field 𝕜] [CharZero 𝕜] [StarRing 𝕜] (f₁ : ι𝕜) (f₂ : ι𝕜) (g : ι𝕜) :
          nl2Inner (f₁ - f₂) g = nl2Inner f₁ g - nl2Inner f₂ g
          theorem nl2Inner_sub_right {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [Field 𝕜] [CharZero 𝕜] [StarRing 𝕜] (f : ι𝕜) (g₁ : ι𝕜) (g₂ : ι𝕜) :
          nl2Inner f (g₁ - g₂) = nl2Inner f g₁ - nl2Inner f g₂
          theorem nl2Inner_nonneg {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [LinearOrderedSemifield 𝕜] [PosSMulMono ℚ≥0 𝕜] [CharZero 𝕜] [StarRing 𝕜] [StarOrderedRing 𝕜] {f : ι𝕜} {g : ι𝕜} (hf : 0 f) (hg : 0 g) :
          theorem abs_nl2Inner_le_nl2Inner_abs {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [LinearOrderedField 𝕜] [StarRing 𝕜] [TrivialStar 𝕜] {f : ι𝕜} {g : ι𝕜} :
          |nl2Inner f g| nl2Inner |f| |g|
          @[simp]
          theorem nl2Inner_self {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [RCLike 𝕜] (f : ι𝕜) :
          theorem nl2Inner_self_of_norm_eq_one {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] [RCLike 𝕜] {f : ι𝕜} [Nonempty ι] (hf : ∀ (x : ι), f x = 1) :
          nl2Inner f f = 1
          theorem linearIndependent_of_ne_zero_of_nl2Inner_eq_zero {ι : Type u_1} {𝕜 : Type u_2} [Fintype ι] {κ : Type u_3} [RCLike 𝕜] {v : κι𝕜} (hz : ∀ (k : κ), v k 0) (ho : Pairwise fun (k l : κ) => nl2Inner (v k) (v l) = 0) :
          @[simp]
          theorem nlpNorm_translate {α : Type u_3} {β : Type u_4} [AddCommGroup α] [Fintype α] {p : ENNReal} [NormedAddCommGroup β] (a : α) (f : αβ) :
          @[simp]
          theorem nlpNorm_conj {α : Type u_3} {β : Type u_4} [Fintype α] {p : ENNReal} [RCLike β] (f : αβ) :
          @[simp]
          theorem nlpNorm_conjneg {α : Type u_3} {β : Type u_4} [AddCommGroup α] [Fintype α] {p : ENNReal} [RCLike β] (f : αβ) :
          theorem nl1Norm_mul {α : Type u_3} {β : Type u_4} [Fintype α] [RCLike β] (f : αβ) (g : αβ) :
          f * g‖ₙ_[1] = nl2Inner (fun (i : α) => f i) fun (i : α) => g i
          theorem nl2Inner_le_l2Norm_mul_l2Norm {ι : Type u_1} [Fintype ι] (f : ι) (g : ι) :

          Cauchy-Schwarz inequality

          The positivity extension which identifies expressions of the form ‖f‖ₙ_[p].

          Instances For

            The positivity extension which identifies expressions of the form ⟪f, g⟫_[𝕜].

            Instances For

              Hölder inequality #

              @[simp]
              theorem nlpNorm_abs {α : Type u_3} [Fintype α] (p : ENNReal) (f : α) :
              theorem nl1Norm_mul_of_nonneg {α : Type u_3} [Fintype α] {f : α} {g : α} (hf : 0 f) (hg : 0 g) :
              theorem nlpNorm_rpow {α : Type u_3} [Fintype α] {p : NNReal} {q : NNReal} {f : α} (hp : p 0) (hq : q 0) (hf : 0 f) :
              f ^ q‖ₙ_[p] = f‖ₙ_[p * q] ^ q
              theorem nl1Norm_rpow {α : Type u_3} [Fintype α] {q : NNReal} {f : α} (hq : q 0) (hf : 0 f) :
              f ^ q‖ₙ_[1] = f‖ₙ_[q] ^ q
              theorem nlpNorm_eq_l1Norm_rpow {α : Type u_3} [Fintype α] {p : NNReal} (hp : p 0) (f : α) :
              f‖ₙ_[p] = |f| ^ p‖ₙ_[1] ^ (p)⁻¹
              theorem nlpNorm_rpow' {α : Type u_3} [Fintype α] {p : NNReal} {q : NNReal} (hp : p 0) (hq : q 0) (f : α) :
              f‖ₙ_[p] ^ q = |f| ^ q‖ₙ_[p / q]
              theorem nl2Inner_le_nlpNorm_mul_nlpNorm {α : Type u_3} [Fintype α] {p : NNReal} {q : NNReal} (hpq : p.IsConjExponent q) (f : α) (g : α) :

              Hölder's inequality, binary case.

              theorem abs_nl2Inner_le_nlpNorm_mul_nlpNorm {α : Type u_3} [Fintype α] {p : NNReal} {q : NNReal} (hpq : p.IsConjExponent q) (f : α) (g : α) :

              Hölder's inequality, binary case.

              theorem nlpNorm_mul_le {α : Type u_3} [Fintype α] {p : NNReal} {q : NNReal} (hp : p 0) (hq : q 0) (r : NNReal) (hpqr : p⁻¹ + q⁻¹ = r⁻¹) (f : α) (g : α) :

              Hölder's inequality, binary case.

              theorem nlpNorm_prod_le {ι : Type u_1} {α : Type u_3} [Fintype α] {s : Finset ι} (hs : s.Nonempty) {p : ιNNReal} (hp : ∀ (i : ι), p i 0) (q : NNReal) (hpq : (Finset.sum s fun (i : ι) => (p i)⁻¹) = q⁻¹) (f : ια) :
              Finset.prod s fun (i : ι) => f i‖ₙ_[q] Finset.prod s fun (i : ι) => f i‖ₙ_[(p i)]

              Hölder's inequality, finitary case.

              Indicator #

              theorem nlpNorm_rpow_indicate {α : Type u_3} {β : Type u_4} [RCLike β] [Fintype α] [DecidableEq α] {p : NNReal} (hp : p 0) (s : Finset α) :
              𝟭 s‖ₙ_[p] ^ p = s.dens
              theorem nlpNorm_indicate {α : Type u_3} {β : Type u_4} [RCLike β] [Fintype α] [DecidableEq α] {p : NNReal} (hp : p 0) (s : Finset α) :
              𝟭 s‖ₙ_[p] = s.dens ^ (p)⁻¹
              theorem nlpNorm_pow_indicate {α : Type u_3} {β : Type u_4} [RCLike β] [Fintype α] [DecidableEq α] {p : } (hp : p 0) (s : Finset α) :
              𝟭 s‖ₙ_[p] ^ p = s.dens
              theorem nl2Norm_sq_indicate {α : Type u_3} {β : Type u_4} [RCLike β] [Fintype α] [DecidableEq α] (s : Finset α) :
              𝟭 s‖ₙ_[2] ^ 2 = s.dens
              theorem nl2Norm_indicate {α : Type u_3} {β : Type u_4} [RCLike β] [Fintype α] [DecidableEq α] (s : Finset α) :
              @[simp]
              theorem nl1Norm_indicate {α : Type u_3} {β : Type u_4} [RCLike β] [Fintype α] [DecidableEq α] (s : Finset α) :
              theorem nlpNorm_mu {α : Type u_3} {β : Type u_4} [RCLike β] [Fintype α] [DecidableEq α] {p : NNReal} (hp : 1 p) (s : Finset α) :
              μ s‖ₙ_[p] = s.dens ^ (p)⁻¹ / s.card
              theorem nl1Norm_mu {α : Type u_3} {β : Type u_4} [RCLike β] [Fintype α] [DecidableEq α] (s : Finset α) :
              μ s‖ₙ_[1] = s.dens / s.card
              @[simp]
              theorem RCLike.nlpNorm_coe_comp {α : Type u_3} [Fintype α] {𝕜 : Type u_4} [RCLike 𝕜] (p : ENNReal) (f : α) :
              RCLike.ofReal f‖ₙ_[p] = f‖ₙ_[p]
              @[simp]