Documentation
Pseudorandom
.
Additive
.
EnergyGrowth
Search
Google site search
return to top
source
Imports
Init
LeanAPAP.Extras.BSG
Pseudorandom.Additive.Stab
Mathlib.Algebra.Order.Chebyshev
Imported by
claim336
Theorem335
source
theorem
claim336
{α :
Type
u_1}
{β :
Type
u_2}
[
DecidableEq
α
]
(K :
Finset
β
)
(hK :
K
.Nonempty
)
(f :
β
→
Finset
α
)
(S :
Finset
α
)
(hS :
S
.Nonempty
)
(δ :
ℝ
)
(hδ :
0
≤
δ
)
(h :
∀
v
∈
K
,
f
v
⊆
S
∧
δ
*
↑
S
.card
≤
↑
(
f
v
)
.card
)
:
∃ i ∈
K
,
δ
^
2
/
2
*
↑
K
.card
≤
↑
(
Finset.filter
(
fun (
x
:
β
) =>
δ
^
2
/
2
*
↑
S
.card
≤
↑
(
f
x
∩
f
i
)
.card
)
K
)
.card
source
theorem
Theorem335
(K :
ℝ
)
(hK :
1
≤
K
)
(p :
ℕ
)
[inst :
Fact
(
Nat.Prime
p
)
]
(A :
Finset
(
ZMod
p
)
)
(T :
Finset
(
ZMod
p
)
)
(h' :
0
∉
T
)
(h :
∀
x
∈
T
,
K
⁻¹
*
↑
A
.card
^
3
≤
↑
E[
A
,
x
•
A
]
)
:
∃ A' ⊆
A
,
∃ (x :
ZMod
p
),
∃ T' ⊆
x
•
T
,
(
2
^
4
)
⁻¹
*
K
⁻¹
*
↑
A
.card
≤
↑
A'
.card
∧
(
2
^
17
)
⁻¹
*
(
K
^
4
)
⁻¹
*
↑
T
.card
≤
↑
T'
.card
∧
T'
⊆
Stab
(
2
^
110
*
K
^
42
)
A'