Discrete Fourier transform in the compact normalisation #
This file defines the discrete Fourier transform in the compact normalisation and shows the Parseval-Plancherel identity and Fourier inversion formula for it.
@[simp]
theorem
cft_smul
{α : Type u_1}
{γ : Type u_2}
[AddCommGroup α]
[Fintype α]
[DistribSMul γ ℂ]
[Star γ]
[StarModule γ ℂ]
[IsScalarTower γ ℂ ℂ]
[SMulCommClass γ ℂ ℂ]
(c : γ)
(f : α → ℂ)
:
Fourier inversion for the discrete Fourier transform.
theorem
cft_inv
{α : Type u_1}
[AddCommGroup α]
[Fintype α]
{f : α → ℂ}
(ψ : AddChar α ℂ)
(hf : IsSelfAdjoint f)
:
theorem
cft_conjneg_apply
{α : Type u_1}
[AddCommGroup α]
[Fintype α]
(f : α → ℂ)
(ψ : AddChar α ℂ)
:
@[simp]
@[simp]
theorem
cft_balance
{α : Type u_1}
[AddCommGroup α]
[Fintype α]
{ψ : AddChar α ℂ}
(f : α → ℂ)
(hψ : ψ ≠ 0)
:
cft (Finset.balance f) ψ = cft f ψ
theorem
cft_dilate
{α : Type u_1}
[AddCommGroup α]
[Fintype α]
{n : ℕ}
(f : α → ℂ)
(ψ : AddChar α ℂ)
(hn : Nat.Coprime (Fintype.card α) n)
:
@[simp]
@[simp]
theorem
cft_indicate_zero
{α : Type u_1}
[AddCommGroup α]
[Fintype α]
[DecidableEq α]
(s : Finset α)
:
theorem
cft_ndconv_apply
{α : Type u_1}
[AddCommGroup α]
[Fintype α]
[DecidableEq α]
(f : α → ℂ)
(g : α → ℂ)
(ψ : AddChar α ℂ)
:
@[simp]
theorem
cft_ndconv
{α : Type u_1}
[AddCommGroup α]
[Fintype α]
[DecidableEq α]
(f : α → ℂ)
(g : α → ℂ)
:
@[simp]
theorem
cft_iterNConv
{α : Type u_1}
[AddCommGroup α]
[Fintype α]
[DecidableEq α]
(f : α → ℂ)
(n : ℕ)
:
@[simp]
theorem
cft_iterNConv_apply
{α : Type u_1}
[AddCommGroup α]
[Fintype α]
[DecidableEq α]
(f : α → ℂ)
(n : ℕ)
(ψ : AddChar α ℂ)
: