Documentation

LeanAPAP.Prereqs.Discrete.Convolution.Norm

Norm of a convolution #

This file characterises the L1-norm of the convolution of two functions and proves the Young convolution inequality.

@[simp]
theorem lpNorm_trivChar {α : Type u_1} {β : Type u_2} [Fintype α] [DecidableEq α] [AddCommGroup α] [RCLike β] (p : ENNReal) :
trivChar‖_[p] = 1
theorem conv_eq_inner {α : Type u_1} {β : Type u_2} [Fintype α] [DecidableEq α] [AddCommGroup α] [RCLike β] (f : αβ) (g : αβ) (a : α) :
(f g) a = l2Inner ((starRingEnd (αβ)) f) (τ a fun (x : α) => g (-x))
theorem dconv_eq_inner {α : Type u_1} {β : Type u_2} [Fintype α] [DecidableEq α] [AddCommGroup α] [RCLike β] (f : αβ) (g : αβ) (a : α) :
(f g) a = (starRingEnd β) (l2Inner f (τ a g))
theorem lpNorm_conv_le {α : Type u_1} {β : Type u_2} [Fintype α] [DecidableEq α] [AddCommGroup α] [RCLike β] {p : NNReal} (hp : 1 p) (f : αβ) (g : αβ) :

A special case of Young's convolution inequality.

theorem lpNorm_dconv_le {α : Type u_1} {β : Type u_2} [Fintype α] [DecidableEq α] [AddCommGroup α] [RCLike β] {p : NNReal} (hp : 1 p) (f : αβ) (g : αβ) :

A special case of Young's convolution inequality.

theorem l1Norm_conv {α : Type u_1} [Fintype α] [DecidableEq α] [AddCommGroup α] {f : α} {g : α} (hf : 0 f) (hg : 0 g) :
theorem l1Norm_dconv {α : Type u_1} [Fintype α] [DecidableEq α] [AddCommGroup α] {f : α} {g : α} (hf : 0 f) (hg : 0 g) :